

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

SEMESTER-V

S. No. Course No. Course Title Credits

 Total Marks

Marks
Hours/Week

100 50

Mid Semester
End Semester

Exam

Project

Cumulative
L P/EL T

1 UMJDTT-501

Understanding

Computer System

Architecture & Circuits

6 40 60 50 4 2 0 150

2 UMJDTT-502

The Logic Behind

Machines: Theory of

Computation

6 40 60 50 4 2 0 150

3 UMJDTT-503

Information exchange

in computing devices:

Data Communication &

Computer Networks

6 40 60 50 4 2 0 150

4 UMJDTT-504

Instructing computing

devices: Operating

System

6

40
60 50 4 2 0 150

5 UMJDTT-505

Building Blocks of

Computing: Groups,

Graphs, and Trees

6 40 60 50 4 2 0 150

*L- Lecture, *T- Tutorial, *P/EL- Practical / Experiential Learning

 Lecture/

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

SEMESTER-VI

S. No. Course No. Course Title Credits

 Total Marks

Marks
Hours/Week

100 50

Mid Semester
End Semester

Exam

Project

Cumulative
L P/EL T

1 UMJDTT-601
Linear Logic: The Art

of Optimization
6 40 60 50 4 2 0 150

2 UMJDTT-602

Exploring Database

Management

Systems

6 40 60 50 4 2 0 150

3 UMJDTT-603

Architecting the

Web: Modern Web

Application

Engineering

6 40 60 50 4 2 0 150

4 UMJDTT-604

Computer Graphics

and Visualization

using Java

6

40
60 50 4 2 0 150

5 UMJDTT-605

Data Structure

Design using Object

Oriented

Programming

(C/C++)

6 40 60 50 4 2 0 150

*L- Lecture, *T- Tutorial, *P/EL- Practical / Experiential Learning

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

SEMESTER-VII

S.

No.
Course No. Course Title Credits

 Total Marks

Marks
Hours/Week

100 50

Mid

Semester

End

Semester

Exam

Project

Cumulative L P/EL T

1 UMJDTT-701

Computer and Brain:

Knowledge Discovery

and Artificial

Intelligence with

Python / MATLAB

6 40 60 50 4 2 0 150

2 UMJDTT-702 Elective 6 40 60 50 4 2 0 150

3 UMJDTT-703
Robotics Process

Automation & Drones
 6 40 60 50 4 2 0 150

4 UMJDTA-704
AI in Neuro & Cognitive

Computing
 6

 40
 60 50 4 2 0 150

5 UMJDTA-705

Numerical methods:

from approximation to

perfection

 6 40 60 50 4 2 0 150

*L- Lecture, *T- Tutorial, *P/EL- Practical / Experiential Learning
Elective: 1- Quantum Computation

2- Crypto Currency & Block Chain Technologies
3- 3D Printing & Design
4- Cloud Computing
5- Cyber Security & Cyber Forensics

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

SEMESTER-VIII

S.

No.
Course No. Course Title Credits

 Total Marks

Marks
Houre/Week

100 50

Mid

Semester

End

Semester

Exam

Project

Cumulative L P/EL T

1 UMJDTA-801
Advance, Generative

AI & Agents
6 40 60 50 4 2 0 150

2 UMJDTT-802
The

Science of Chance
 6 40 60 50 4 2 0 150

3 UMJDTT-803 Computer Vision 6 40 60 50 4 2 0 150

4 UMJDTT-804
IoT Sensor Networks

& Data Analytics
 6

 40
 60 50 4 2 0 150

5 UMJDTT-805

Major Project /

Industrial Internship

(AI/ML/PYTHON/M

ATLAB)

 6 40 60 50 4 2 0 150

*L- Lecture, *T- Tutorial, *P/EL- Practical / Experiential Learning

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester V

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-501 Course Title: Understanding Computer System

Architecture & Circuits

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course provides a comprehensive understanding of computer

architecture and organization, bridging theoretical foundations with practical applications.

Students will explore the evolution of computer systems, digital circuit design, microprocessor

programming, memory hierarchies, and advanced processor features. Through simulations,

assembly programming, and hands-on projects, learners will gain the ability to analyze system

performance, design hardware-software solutions, and apply modern architectural concepts such

as parallelism, cache optimization, and system interfacing to real-world computing problems.

LEARNING OUTCOMES:

By the end of this course, students will be able to:

1. Understand and explain the principles, components, and performance metrics of computer

architecture, including CPU, memory, I/O systems, and instruction set design.

2. Design and analyze digital circuits, microprocessor-based systems, and memory

hierarchies using simulation tools and assembly programming.

3. Evaluate and apply advanced processor features such as cache mapping, branch

prediction, parallel architectures, and system interfacing techniques.

4. Integrate theoretical concepts with practical applications through hands-on projects and

simulations to solve real-world computing problems.

MODULE 1: Computer Architecture Fundamentals

History and evolution of computer systems. Overview of architectures: Von Neumann vs.

Harvard. Basic components: CPU, memory, I/O systems, system buses. Instruction Set

Architecture (ISA): RISC vs. CISC, instruction types, addressing modes. Performance

metrics: MIPS, CPI, FLOPS, Amdahl’s Law.

Hands-On Activities:

1. Identify and compare architectures of different real-world processors.

2. Measure CPU performance metrics using benchmarking tools.

MODULE 2: Digital Logic and Circuit Design

Boolean algebra and logic gates. Combinational circuits: adders, subtractors, multiplexers,

encoders, decoders. Sequential circuits: flip-flops, registers, counters. Logic families: TTL,

CMOS characteristics, power dissipation. Design and simulation of arithmetic and control

circuits.

Hands-On Activities:

1. Simulate combinational and sequential circuits using software like Logisim or Multisim.

2. Design and test arithmetic units (e.g., 4-bit adder, ALU).

MODULE 3: Microprocessor Architecture and Programming (8085)

Internal architecture and pin configuration. Address, data, and control buses. Instruction

set of 8085. Basics of Assembly language programming. Stack, subroutines, and

interrupts.

 Hands-On Activities:

1. Write and execute basic assembly programs for 8085 using an emulator.

2. Interface simple input/output devices with the 8085 in a simulation environment.

MODULE 4: Memory Systems and CPU Organization

Types of memory: RAM, ROM, EPROM, EEPROM. Memory hierarchy: Registers, cache,

main memory, secondary storage. Cache memory: Mapping techniques (direct,

associative, set-associative), coherence protocols (MESI). Memory technologies: SRAM,

DRAM, ROM. Memory optimization: Prefetching, write-through vs. write-back policies.

Concept of virtual memory. CPU organization: Single-cycle and multi-cycle data path,

control unit design (hardwired vs. microprogrammed).

Hands-On Activities:

1. Simulate cache mapping and replacement policies.

2. Analyze performance impact of memory hierarchy using tools like GEM5 or

SimpleScalar.

MODULE 5: Advanced Architectures and System Interfacing

Instruction-level parallelism: Superscalar processors, out-of-order execution. Branch

prediction: Static and dynamic techniques, branch target buffers. SIMD and MIMD

architectures: Introduction and applications. System interfacing: Memory-mapped vs.

isolated I/O, DMA, interrupts (PIC, APIC). Modern interfaces: PCIe, USB, SATA, I²C, SPI.

Parallel architectures: Multi-core, SMP, NUMA, many-core systems. Interconnection

networks: Bus, crossbar, Network-on-Chip (NoC).

Hands-On Activities:

1. Analyze multi-core performance using parallel processing benchmarks.

2. Simulate I/O interfacing scenarios.

PROJECTS DURING THE SEMESTER:

1. Design a Cache Simulator to evaluate hit/miss rates under various mapping and

replacement policies.

2. 8085 Microprocessor-Based Traffic Light Controller simulation.

3. Benchmarking and Analyzing Multi-Core CPU Performance using parallel algorithms.

4. Simulation of a Virtual Memory Paging System with different replacement policies.

PEDAGOGY:

Mentor should introduce each topic through practical, real-world scenarios such as

processor performance in gaming, IoT device interfacing, or multi-core server

optimization. Students should approach problems using a "How Computers Really Work"

methodology, enabling them to derive hardware and software solutions naturally through

experimentation rather than rote memorization.

RECOMMENDED TEXTBOOKS

Primary Textbooks:

1. M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals,

Pearson.

2. David A. Patterson and John L. Hennessy, Computer Organization and Design,

Morgan Kaufmann.

3. Supplementary Textbooks:

4. Ramesh S. Gaonkar, Microprocessor Architecture, Programming, and Applications

with the 8085, Prentice Hall.

5. William Stallings, Computer Organization and Architecture: Designing for

Performance, Pearson.

6. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann.

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester V

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-502 Course Title: The Logic Behind Machines: Theory of

Computation

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course introduces the theoretical foundations of computation,

focusing on formal languages, automata theory, and the principles underlying compiler design.

Students will study regular expressions, finite automata, context-free grammars, pushdown

automata, and Turing machines, along with the concepts of decidability and unsolvable problems.

Emphasis is placed on connecting mathematical models of computation to real-world applications

through simulations, hands-on activities, and mini-projects, enabling learners to model, design,

and analyze computational systems effectively.

LEARNING OUTCOMES:

1. To apply mathematical foundations, algorithmic principles and computer science theory

to the modeling and design of computational systems.

2. To demonstrate knowledge of basic mathematical models of computation and describe

how they relate to formal languages.

3. To understand the limitations of computers and know about unsolvable problems.

4. To understand different phases, intermediate representations, algorithms and principles

of working of a compiler

MODULE – I REGULAR EXPRESSIONS AND LANGUAGES:

Sets, relations, functions; strings, alphabets, and languages, Regular expressions and

their algebra, Regular grammar and languages, Closure properties, Finite automata (FA),

Mealy and Moore machines, Applications of regular expressions

Hands-On Activities:

i. Simulate and test regular expressions for pattern matching

ii. Convert regular expressions to equivalent finite automata

MODULE – II FINITE AUTOMATA

Non-Deterministic and Deterministic Finite Automata, Equivalence of Regular Expression

and Finite automata, Equivalence of ε-NFA and NFA, Equivalence of NFA and DFA,

Pumping Lemma for Regular Languages, Applications of finite automata.

Hands-On Activities:

i. Design DFAs for language recognition

ii. Validate input strings against NFAs and DFAs using simulation tools

MODULE – III CONTEXT FREE GRAMMAR

Grammar and its classification, Production rules and derivation, Context free Languages,

Closure properties for context free languages, Pushdown Automata, Backus-Naur Form,

Chomsky Normal Form, Griebach Normal Form, Pumping Lemma for Context free

languages, Applications of Context Free Grammar.

Hands-On Activities:

i. Convert CFGs to CNF and GNF

ii. Design PDAs for balanced parentheses and palindromes

MODULE – IV TURING MACHINES

Description, Transition diagram, Roles of Turing machine, Church-Turing Thesis, Modular

Construction of complex Turing machines, Extensions of Turing machines, Non-

Deterministic Turing Machines. Universal Turing Machine, Turing acceptable and Turing

decidable languages.

Hands-On Activities:

i. Design a TM for binary addition or palindrome checking

ii. Explore simulations of Universal Turing Machines

MODULE – V FUNCTION THEORY

Recursive Function Theory and Unsolvable Problems Partial, total and constant functions,

Primitive recursive functions; Unbounded minimalization and µ-recursion; Decidable and

Undecidable Problems, The Halting Problem, Reduction to Another Undecidable Problem,

Undecidability of Post Correspondence Problem.

Hands-On Activities:

i. Analyze problems for decidability

ii. Discuss proof sketches for undecidability using reduction techniques

PROJECTS DURING THE SEMESTER:

i. Design a lexical analyzer using regular expressions and finite automata

ii. Construct a PDA for parsing a simple expression grammar

iii. Analyze the halting problem for different machine models

PEDAGOGY:

Mentor must introduce each topic by connecting it to real-life computing scenarios such

as language design, compilers, and problem-solving in computer science. Concepts like

automata, grammars, and Turing machines should be taught through visual tools,

simulators, and relatable analogies to enable intuitive understanding. Students should be

encouraged to discover patterns, construct machines, and explore computational

boundaries using the “How to Solve it” approach. Abstract theoretical ideas must unfold

organically through engaging examples rather than as rigid formal definitions.

 RECOMMENDED TEXTBOOKS:

1. H. R. Lewis and C. H. Papadimitriou - Elements of the Theory of Computation, Prentice

Hall of India.

2. J. E. Hopcroft, R. Motwani and J. D Ullman - Introduction to Automata Theory,

Languages and Computation, Pearson Education Asia.

3. Michael Sipser, Introduction to the Theory of Computation, Second Edition, Thomson,

2006.

4. Jeffrey Shallit, A Second Course in Formal Languages and Automata Theory, Cambridge

University Press, 2008.

 5. K. L. P. Mishra and N. Chandrasekaran - “Theory of Computations (Automata,

languages and Computation)”, Prentice Hall.

 6. Rogers H., Theory of Recursive Functions and effective computing, Mcgraw-Hill

 7. J.C.Martin–Introduction to Languages and Theory of Computation, Tata Mcgraw Hill.

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester V

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-503 Course Title: Information exchange in computing

devices: Data Communication & Computer Networks

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course provides a comprehensive introduction to computer

networks, covering data communication principles, networking models, protocols, and system

architectures. Students will explore physical and data link layer technologies, routing algorithms,

Internet protocols, and transport layer services, along with applications such as DNS, HTTP, and

secure communication. Emphasis is placed on practical skills through simulations, socket

programming, and security implementations, enabling learners to design, analyze, and secure

modern computer networks.

LEARNING OUTCOMES:

1. To study the basic taxonomy and terminology of the computer networking model and

architecture.

2. To study the fundamentals of data communication and protocols.

3. To study network design and performance issues.

4. To explore the basic knowledge of cryptography and network security.

MODULE - I FUNDAMENTALS OF COMMUNICATION

Fundamentals of Communication, Modulation, Data Encoding, OSI reference model,

TCP/IP model, network standardization, Inter-networking. Physical layer, Switching

Technique, Transmission media, Co-axial, Twisted Pair and Fiber Optic Cables,

Transmission Impairments, Electromagnetic Spectrum, Radio waves, Microwaves,

Satellites, Wireless Mobile Telecommunications Technology.

Hands-On Activities:

i. Use spectrum analyzers to explore signal frequencies

ii. Set up basic wired and wireless transmission models

MODULE - II DATA TRANSMISSION AND MEDIA ACCESS METHODS

Data Link layer, Design issues, Frame, Error detection and correction, Flow Control,

Elementary Data link protocols, Character-oriented and Bit-oriented Protocols, Sliding

window protocols. Channel allocation methods, TDM, FDM, ALOHA, Carrier sense Multiple

access protocols, Collision free protocols, IEEE standard 802 for LANS, Ethernet, Token

Bus, Token ring.

Hands-On Activities:

i. Simulate sliding window and stop-and-wait protocols

ii. Implement CSMA/CD and compare with ALOHA in NS2/NS3

MODULE - III NETWORK ESTABLISHMENT CONCEPTS

Network Layer, Store and Forward Packet Switching, Connectionless and Connection-

oriented services, Virtual Circuit, Routing Algorithms, Shortest path, Flooding, Link State,

Distant vector, Hierarchical, Broadcast and Multicast Routing. OSPF, BGP, Congestion,

Congestion control algorithms.

Hands-On Activities:

i. Visualize routing algorithms using simulation tools

ii. Analyze congestion using network traffic simulators

MODULE – IV INTERNET PROTOCOLS

TCP/TP Protocol, IP Addresses, Classes of IP Addresses, Subnets, IPv6, Network layer in

the Internet, Internet Control Protocols, ARP, RARP, BOOTP, DHCP, Transport Layer,

Protocol Stack, TCP and UDP, Transport Services Primitives, Sockets, Socket Programming

concept.

Hands-On Activities:

i. Develop basic TCP and UDP socket programs in Python

ii. Configure IP addressing and subnetting on local networks

MODULE – V NETWORK APPLICATION AND NETWORK SECURITY

Application layer, Name service (DNS), Domain Hierarchy, Name servers, Name
resolutions, Traditional applications, Telnet, FTP, SMTP, MIME, World wide web-HTTP,
HTTP Methods. Cryptographic Algorithms, DES, AES, RSA, Key exchange methods,
Authentication Protocol, Digital Signatures.

Hands-On Activities:

i. Simulate secure message exchange using RSA
ii. Set up DNS and FTP servers in a virtual lab environment

PROJECTS DURING THE SEMESTER:

i. Design a secure file transfer protocol using TCP and encryption
ii. Analyze routing efficiency in dynamic topologies
iii. Implement DNS resolver with local caching

PEDAGOGY:

Mentor must introduce each topic by relating it to everyday technologies like email, web
browsing, mobile communication, and IoT devices to foster intuitive understanding.
Networking concepts such as protocols, transmission methods, and addressing should
emerge naturally through real-life problem scenarios like online video streaming or secure
file transfer. Emphasis should be laid on simulation-based learning and hands-on lab
experiments using packet tracers, socket programming, or protocol analyzers. Students
should be guided to build mental models of layered architectures and data flows by
following a “How to Solve it” approach, empowering them to design, troubleshoot, and
optimize networks.

RECOMMENDED TEXTBOOKS:

1. Andrew S. Tanenbaum, "Computer Networks", 5 e, 2013, Pearson Education Asia.

2. Behrouz A. Forouzan, "Data Communications and Networking", 4e, 2004, Tata McGraw

Hills.

3. William Stallings. "Data and Computer Communication", 7e, 2016, Pearson Education

Asia.

4. Prakash C. Gupta, “Data Communications and Computer Networks”, PHI

5. Michael A. Miller, "Data and Network Communications", 2e, Delmar Thomson Learning.

6. James F. Kurose and Keith W. Ross, "Computer Networking", 3e, Pearson Education.

7. William A. Shay, “Understanding Data Communications and Networks”, 2e, Thomson

Asia Pvt. Ltd.

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester V

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-504 Course Title: Instructing computing devices:

Operating System

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course introduces the principles and mechanisms of modern

operating systems, focusing on process management, memory management, file systems, and

I/O handling. Students will learn key concepts such as scheduling, synchronization, deadlocks,

virtual memory, and system calls, while also gaining practical exposure to Unix/Linux

environments and shell programming. Through simulations, coding exercises, and hands-on

projects, learners will develop the ability to analyze and implement core OS functionalities and

understand their role in real-world computing systems.

LEARNING OUTCOMES:

1. To learn the fundamentals of Operating Systems.

2. To learn the mechanisms of OS to handle processes and their communication.

3. To learn the mechanisms involved in memory management in OS.

4. To brief the students about basic concepts of Unix & Linux and programs using shell

programming.

MODULE – I INTRODUCTION TO OPERATING SYSTEMS

Evolution of operating systems, Operating systems concepts, Types of operating systems,

Different views of the operating system, Operating system services, System calls, Types

of system calls. Operating system Structure, Layered Approach, Microkernels, Virtual

machines.

Hands-On Activities:

i. Use system calls like fork, exec, wait in a Linux environment

ii. Identify OS structures in various Linux distributions

MODULE - II PROCESS MANAGEMENT

Process concept, Operation on processes, Inter-process communication, Mutual exclusion,

Introduction to Process scheduling, Scheduling algorithms, Process Synchronization, Inter

process Synchronization, Critical section problem, Semaphores, Monitors, Message

passing. Deadlocks, System Model, Deadlock characterization, Deadlock prevention,

Deadlock avoidance.

Hands-On Activities:

i. Simulate process scheduling algorithms

ii. Implement producer-consumer problem using semaphores in C/Linux

MODULE - III MEMORY MANAGEMENT

Memory management, Swapping, Contiguous memory allocation, Relocation & protection,

Memory management, Paging, Segmentation, Intel Pentium Segmentation, Intel Pentium

Paging, Virtual memory, Demand paging, Performance of demand paging, Page

replacement algorithms: FIFO, Optimal, LRU, Counting based page replacement.

Hands-On Activities:

i. Analyze page faults using simulation tools

ii. Write code to simulate LRU and FIFO algorithms

MODULE - IV FILE & I/O MANAGEMENT

File & I/O Management Files system structure, File system implementation, Directory

Implementation. Allocation Methods, contiguous allocation, linked allocation, Indexed

allocation Disk organization, Disk space management, Disk scheduling, Disk Management,

RAID Structure.

Hands-On Activities:

i. Simulate file allocation techniques

ii. Analyze disk scheduling with real input-output logs

MODULE – V INTRODUCTION TO LINUX/UNIX

Directory tree, file types, file permissions, Common UNIX commands: ls, cat, mv, cp, grep,

chmod, etc., Shell programming basics: Variables, control structures, loops, Filters and

text-processing tools, Introduction to VI editor

Hands-On Activities:

i. Write shell scripts for batch file operations and log processing

ii. Explore directory and permission structures in Linux

 PROJECTS DURING THE SEMESTER:

i. Simulate a simple shell with process and file management commands

ii. Design and analyze scheduling algorithms using real or synthetic data

iii. Develop a memory management visualizer for paging and segmentation

PEDAGOGY

Mentor must introduce operating system concepts through relatable, real-world

computing experiences such as multitasking on smartphones, file management, and

memory usage in common applications. Abstract concepts like process scheduling,

memory management, and system calls should be demonstrated using simulations and

practical examples within Linux/UNIX environments. Students should be encouraged to

experiment through shell scripting, process tracing, and memory allocation exercises.

Teaching should follow the “How to Solve it” approach, enabling learners to internalize

the design and functioning of an OS by building intuition and problem-solving skills, rather

than memorizing definitions and mechanisms.

RECOMMENDED TEXTBOOKS:

1. Silberschart, Galvin, Gagne, “Operating System Concepts”, 9th Edition, WSE Wiley,

2016.

2. Andrew. S. Tanenbaum, “Modern operating systems”, 4th Edition, Pearson Prentice Hall,

2018

3. Milan Milenkovic, “Operating system-concepts and design”, 2nd Edition, McGraw Hill

International Edition, 2005

4. A. S. Godbole, “Operating systems”, 3rd Edition, Tata McGraw hill, 2017.

5. Deitel H. M., “Operating System”, 3rd Edition, Pearson Publications, 2012.

6. Madnick& Donovan, “Operating Systems”, Tata McGraw Hill, 2003.

7. Sumitabha Das, “UNIX Concepts and Application”, 4th Edition, Tata McGraw Hill, 2017.

8. Richard L. Petersen, “The Complete Reference Linux”, 6th Edition, Tata McGraw Hill,

2010

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester V

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-505 Course Title: Building Blocks of Computing: Groups,

Graphs, and Trees

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course introduces the foundations of algebraic structures and

graph theory with applications in computing and communication. Students will explore groups,

subgroups, and their role in cryptography, while learning to model and analyze systems using

graphs. Key topics include shortest paths, graph coloring, isomorphism, trees, spanning trees,

and Huffman coding. Through problem-solving, simulations, and hands-on activities, learners will

develop the ability to apply mathematical principles to encryption, scheduling, network design,

and data compression in real-world scenarios.

LEARNING OUTCOMES:

i. Identify and verify the properties of groups and subgroups, and apply them to cryptographic

principles.

ii. Represent real-world systems as graphs, analyze connectivity and related properties, and test

for isomorphism.

iii. Apply algorithms such as Dijkstra’s for shortest paths and use graph coloring techniques for

scheduling and resource allocation.

iv. Understand tree properties and traversal methods, and apply Huffman coding for efficient

data compression.

v. Implement Prim’s and Kruskal’s algorithms to find minimum spanning trees for cost-effective

network design

vi.

MODULE – I INTRODUCTION TO ALGEBRAIC STRUCTURES & GROUPS

• Building Blocks of Operations: Discover how sets and binary operations form the backbone

of mathematical structures used in computing.

• Group Power: Step into the world of groups—sets where closure, associativity, identity,

and inverses rule the game.

• Abelian Harmony: Experience the simplicity of commutative groups and their role in

symmetric systems.

• Cyclic Spins: See how cyclic groups revolve around a single generator, powering

encryption and coding.

• Permutation Playgrounds: Explore permutation groups and their magic in rearranging data

without losing structure.

• Subgroup Secrets: Identify subgroups and understand how smaller structures inherit

group power.

• From Math to Machines: Apply group theory to cryptography, error detection, network

security, and pattern recognition.

Hands-On Activities:

i. Operation Lab: Code addition modulo n and string concatenation; verify closure,

associativity, identity, and inverse properties.

ii. Group Detective: Given a set and operation table, check if it forms a group; identify

which property fails if it doesn’t.

iii. Cyclic Explorer: Generate all elements of a cyclic group from one generator and

visualize the cycle.

iv. Permutation Playground: List all permutations of a set and verify group properties

under composition.

v. Crypto Mini-Challenge: Implement a simple RSA-like encryption using modular

arithmetic and cyclic group concepts.

MODULE - II Foundations of Graph Theory-Representations and Traversals

• Webs and Maps: Explore what graphs are and how we represent them (adjacency,

incidence).

• Walking the Bridges: Discover Euler’s Relation and tackle Eulerian paths.

• Spot the Twins: Learn how to recognize when two graphs are truly the same

(isomorphism).

• Testing Strength: Identify points of fragility—connectivity, cut vertices, and bridges.

• Strategic Watching: Get the basics of covering sets.

• Epic Journeys: Seek out Euler and Hamilton paths and circuits.

Hands-On Activities:

i. Map a real network (classroom, bus routes) as a graph.

ii. Solve your own “Bridge of Königsberg” puzzle.

iii. Detect isomorphism between pairs of graphs.

iv. Remove nodes/edges to test network resilience.

v. Find Euler/Hamilton paths in sample graphs.

MODULE - III Structural Insights—Connectivity, Coverings, and Equivalence

• Connectivity Analysis: Delve into vertex- and edge-connectivity to gauge network

robustness.

• Cut Vertices & Bridges: Understand how single elements can fragment a graph.

• Covering Sets & Domination: Learn to select minimal sets of vertices or edges that “watch

over” entire networks.

• Graph Isomorphism: Master algorithms to confirm graph identity, from degree sequences

to sophisticated matching.

Hands-On Activities:

vi. Compute connectivity measures on various graph families and real-world

networks.

vii. Identify cut vertices and bridges in communication and transportation graphs.

viii. Find minimal vertex and edge covers for surveillance and resource placement

tasks.

ix. Apply isomorphism-testing techniques to distinguish non-identical structures with

similar metrics.

MODULE - IV Algorithms and Applications—Shortest Paths to Planarity

• Shortest Routes: Master Dijkstra’s algorithm to find the quickest path through a network.

• The Salesman’s Quest: Dive into the Travelling Salesman Problem, exploring challenges

in finding optimal tours.

• Scheduling Success: Translate jobs and tasks into graphs to solve scheduling challenges

efficiently.

• Matchmaking and Independence: Understand graph matching and independent sets to

pair up elements or find conflict-free groups.

• Color Your World: Apply graph coloring strategies to solve real-world problems like

resource allocation and scheduling.

• Planar Insights: Uncover the beauty of planar graphs and grasp Euler’s formula’s elegant

balance.

• Hidden Obstacles: Explore Kuratowski’s theorem to recognize graphs that can’t be drawn

on a plane without crossings.

Hands-On Activities:

x. Implement Dijkstra’s algorithm on sample maps to find shortest paths.

xi. Experiment with small Travelling Salesman instances to understand complexity.

xii. Create task graphs and develop job schedules respecting dependencies.

xiii. Solve simple matching problems and identify independent sets in graphs.

xiv. Apply graph coloring to timetable or resource allocation scenarios.

xv. Visualize planar graphs and verify Euler’s formula.

xvi. Detect non-planar graphs using Kuratowski’s criteria.

MODULE - V Trees—Structure, Codes, and Connections

• Roots and Branches: Understand what trees are—their definitions and key properties

shaping hierarchical structures.

• Walking the Tree: Explore tree traversal methods—preorder, inorder, and postorder—and

see how they reveal different views of data.

• Secret Codes: Dive into prefix codes and Huffman coding, learning how trees help

compress data efficiently and uniquely.

• Bridging Networks: Learn what spanning trees are and why they form the backbone of

connecting all nodes without cycles.

• Building Minimal Links: Master Prim’s and Kruskal’s algorithms to craft minimum spanning

trees, finding the least-cost way to connect everything.

Hands-On Activities:

i. Perform preorder, inorder, and postorder traversals on sample trees.

ii. Build a Huffman tree from character frequencies and encode/decode messages.

iii. Identify spanning trees in sample graphs.

iv. Implement Prim’s and Kruskal’s algorithms to find minimum spanning trees on

weighted graphs.

PEDAGOGY

Each topic in this course begins with relatable real-life scenarios or practical problems,

providing students with an intuitive grasp of core concepts. Emphasizing a "learning by

doing" philosophy, students actively build their mathematical understanding through

hands-on activities, interactive coding simulations, and collaborative classroom problem-

solving. This approach ensures theory is naturally connected to application, fostering

deeper insight and confidence in the subject.

RECOMMENDED TEXTBOOKS:

i. Gallian, J. A., Contemporary Abstract Algebra (10th ed.), Cengage Learning, 2018.

ii. Rosen, Kenneth H., Discrete Mathematics and Its Applications, 8ᵗʰ ed., McGraw-Hill

Education, New York, NY, 2019.

iii. Epp, S. S., Discrete Mathematics with Applications (5th ed.), Cengage Learning, 2019.

iv. Liu, C. L., & Mohapatra, D. P., Elements of Discrete Mathematics: A Computer-Oriented

Approach (3rd ed.), Tata McGraw Hill, 2008.

v. West, Douglas B. Introduction to Graph Theory, 2ⁿᵈ ed., Prentice Hall, Upper Saddle River,

NJ, 2000.

vi. Software and Tools:

a. Python (networkx, matplotlib, itertools)

b. Gephi or Graphviz (for visualization)

c. Spreadsheet tools like Excel for combinatorics

d. C++ or Java for algorithm implementation

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester VI

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-601 Course Title: Linear Logic: The Art of Optimization

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course explores the principles and applications of linear
optimization, emphasizing problem formulation, modeling, and solution techniques. Students will
learn linear programming through graphical and simplex methods, apply transportation and
assignment models to real-world problems, and gain insights into game theory for strategic
decision-making. With hands-on practice using computational tools such as MATLAB and Geo
Gebra, learners will develop the ability to optimize resources, design efficient systems, and solve
practical problems in areas like logistics, planning, and strategic management.

LEARNING OUTCOMES: The objectives of the course on “Linear Logic: The Art of Optimization”

include:

1. formulation and solution of linear programming problems using graphical and simplex

methods;

2. solution of real-life problems using transportation and assignment models;

3. developing a solid understanding of game theory;

4. application of computational tools like MATLAB and GeoGebra to model and solve

optimization problems.

MODULE - I FROM PROBLEM TO PLOT

Concept of optimization, Linear Programming: Introduction, Formulation of a Linear

Programming Problem (LPP), Requirements for an LPP, Advantages and limitations of LP.

Graphical solution: Multiple, unbounded, and infeasible solutions.

Hands-On Activities:

i. Graphical solution of LPP using Geo Gebra

ii. Identifying feasible region and optimal solution using Geo Gebra

MODULE - II SIMPLEX MADE SIMPLE

Principle of the simplex method: standard form, basic solution, basic feasible solution.

Computational Aspect of Simplex Method: Cases of unique feasible solution, no feasible

solution, multiple solutions, unbounded solution, and degeneracy. Two Phase and Big-M

methods.

Hands-On Activities:

i. Implementing Simplex method using MATLAB

ii. Model motion planning problems when dynamics are linear (e.g., minimum-energy

trajectories).

MODULE -–III PRIMAL MEETS DUAL

Duality in LPP, primal-dual relationship. Meaning of sensitivity (post-optimality) analysis.

Changes in Objective Function. Changes in Resources. Addition of a New Variable. Addition

of a New Constraint.

Hands-On Activities:

i. Solve a primal/dual problem in Excel

ii. Run Solver → check the Sensitivity Report

MODULE -–IV ASSIGN & CONQUER

Unbalanced and degenerate transportation problems, transhipment problems, and

maximization in a transportation problem. Assignment Problem: Solution by the Hungarian

method, Unbalanced assignment problem, Maximization in an assignment problem, Crew

assignment, and Travelling salesman problem.

Hands-On Activities:

i. MODI method for optimal transportation solution using MATLAB

ii. Maximization in Assignment: Matchmaking, recommendation engines, strategic

resource use.

MODULE -–V GAME THEORY

Game Theory: Two-person zero sum games, maxmin-minmax principle, games without

saddle points (Mixed strategies), graphical solution of 2 × 𝑛 and 𝑚 × 2 games, dominance

property, arithmetic method of n× n games, general solution of m × n rectangular games.

Hands-On Activities:

i. Use graphing tools (GeoGebra or Desmos) to solve 2×n and m×2 games.

ii. Application in real-life scenarios (e.g., cybersecurity, bidding wars).

PROJECTS DURING THE SEMESTER:

i. Optimizing Food Distribution for a Campus Canteen Using LPP and Transportation

Models

ii. Efficient Ride Allocation for a Campus Shuttle Service Using Assignment and Game

Theory

iii. Designing Minimum-Cost Marketing Strategies for Local Startups Using Simplex and

Duality

PEDAGOGY:

Mentor must introduce each topic with the help of real-life situations/problems so as to

give complete understanding of the concept and enabling the students to find solutions

to the problems at their own by “How to Solve it” approach. Mathematical concepts must

come to the students in a natural way instead of imposing on them.

RECOMMENDED TEXTBOOKS

Primary Textbooks:

1. H. A. Taha, Operations Research-An Introduction, Macmillan Publishing Company Inc.,

2006.

2. A. Ravindran, D.T. Phillips, and J.J. Solberg, Operations Research: Principles and

Practice, 2nd Edition, John Wiley and Sons, 1987.

Supplementary Textbooks:

1. F.S. Hiller, and G.J. Liebermann, Introduction to Operations Research, Tata McGraw

Hill, 2000.

2. K. Swarup, P.K. Gupta, and M. Mohan, Operations Research, Sultan Chand & Sons,

New Delhi, 2001.

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester VI

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-602 Course Title: Exploring Database Management

Systems
Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course provides a comprehensive introduction to database

management systems, covering concepts of DBMS architecture, relational models, normalization,

concurrency control, and SQL programming. Students will learn to design ER models, transform

them into relational schemas, and write optimized SQL queries for real-world applications.

Through hands-on activities and projects, learners will gain practical skills in database design,

implementation, and security, preparing them to build and manage efficient data-driven systems.

LEARNING OUTCOMES:

1. Understand DBMS architecture and operations

2. Design ER-models and transform them into schemas

3. Write and optimize SQL queries

MODULE –I DATABASE CONCEPTS

File-based vs DBMS, architecture, Schemas, data independence, centralized &

client-server DBMS,

Hands-On Activities:

1. Create sample databases using MySQL/PostgreSQL

2. Simulate database file structures

MODULE - II RELATIONAL DATA MODEL

ER to relational mapping, relational algebra/calculus, Joins and queries using

relational models

Hands-On Activities:

1. Build ER diagrams using draw.io or MySQL Workbench

2. Query practice with JOINs and nested queries.

MODULE – III NORMALIZATION

Functional dependencies, keys, 1NF to 5NF, BCNF, MVDs

Hands-On Activities:

1. Normalize unstructured tables

2. Design fully normalized schema in DBMS

MODULE - IV CONCURRENCY CONTROL

Transactions, deadlocks, concurrency, Locking, timestamp ordering, recovery

Hands-On Activities:

1. Simulate concurrent transactions

2. Implement two-phase locking in SQL scripts

MODULE – V SQL

 SQL syntax, joins, views, inbuilt functions, Roles, privileges, data integrity

Hands-On Activities:

1. SQL programming challenges on HackerRank or DB Fiddle

2. Build a secure, role-based SQL database

PROJECTS DURING THE SEMESTER:

1. Student Record Management System

2. Role-based Hospital DBMS

3. E-commerce Order Tracking DB

PEDAGOGY:

Mentor must introduce each database concept by linking it to real-life applications such

as library management systems, hospital records, e-commerce platforms, or social media

analytics. Concepts like ER modeling, relational design, normalization, SQL querying, and

transaction management should be taught through a balance of theory and hands-on

implementation using industry-standard tools like MySQL or PostgreSQL. Students should

compare different database models and query languages to understand trade-offs in

design and performance. Emphasis should be placed on visualization of schemas, query

execution plans, and concurrency scenarios. Through the “How to Solve it” approach,

learners should be encouraged to identify the most appropriate database structures and

operations for a given problem, focusing on efficient, secure, and scalable solutions rather

than rote query writing.

 RECOMMENDED TEXTBOOKS:

1. Bipin C. Desai, An Introduction to Database Systems

2. Ramez Elmasri & Shamkant B. Navathe, Fundamentals of Database Systems

3. C. J. Date, An Introduction to Database Systems

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester VI

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-603 Course Title: Architecting the Web: Modern Web

Application Engineering

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course offers an in-depth exploration of modern web

development, covering the foundations of web architecture, frontend and backend integration,

state management, performance optimization, and security practices. Students will gain hands-

on experience in building full-stack, responsive applications using frameworks and tools such as

React, Node.js, Docker, and Graph QL, while also learning DevOps and cloud deployment

techniques. Advanced topics like PWAs, micros ervices, server less computing, and emerging

trends prepare learners to design scalable, secure, and future-ready web applications.

LEARNING OUTCOMES:

1. Understand web architecture, frontend/backend integration, and security practices.

2. Build full-stack, responsive web applications using modern technologies.

3. Use DevOps, CI/CD, and cloud deployment in real-world projects.

4. Explore modern web architectures like PWAs, Microservices, Serverless, and GraphQL.

MODULE – I FOUNDATIONS OF WEB ARCHITECTURE AND FRONTEND BASICS

Evolution: Static to SPA to PWA, Client-server model, HTTP/HTTPS, DNS, HTML5, CSS3,

JavaScript (ES6+), DOM, async programming, Responsive design: Flexbox, Grid, media

queries, Tooling: npm, Webpack/Vite, Babel, Git

Hands-On Activities:

1. Build a responsive webpage using HTML, CSS, and JS

2. DOM manipulation and async interaction using Promises

3. Set up a project with npm and Webpack

MODULE – II WEB TECHNOLOGIES, APIS, AND BACKEND FUNDAMENTALS

Frontend: React/Vue/Angular; Backend: Node.js, PHP, Flask, REST API: CRUD, JWT,

OAuth 2.0, SQL vs NoSQL; ORM tools, SSR vs CSR, Microservices overview, API docs:

Swagger/OpenAPI

Hands-On Activities:

1. Create a RESTful API using Express.js or Flask

2. Integrate MongoDB or PostgreSQL

3. API authentication using JWT

MODULE – III FULL-STACK DEVELOPMENT AND STATE MANAGEMENT

Component design: Virtual DOM, props, state, State management: Redux, Context API,

Routing and SPA patterns, Full-stack frameworks: Next.js, GraphQL basics, WebSockets,

real-time messaging.

Hands-On Activities:

1. Build a small React+Node full-stack app

2. Implement WebSocket-based chat feature

3. Use Apollo for GraphQL integration

MODULE – IV PERFORMANCE, SECURITY, AND DEVOPS PRACTICES

Performance: lazy loading, CDN, caching, Security: XSS, CSRF, input validation, CORS,

Testing: Jest, Cypress, CI/CD: GitHub Actions, Docker, Logging & Monitoring: ELK stack,

Prometheus

Hands-On Activities:

1. Create CI/CD pipeline with GitHub Actions

2. Dockerize a web app

3. Write unit & integration tests with Jest

MODULE – V ADVANCED ARCHITECTURES AND EMERGING TRENDS

Microservices, serverless (AWS Lambda, Firebase), Scalability: Load balancing,

autoscaling, Terraform, PWAs, Edge computing, Jamstack, WASM, AI/ML integration,

Kafka, Ethics: Privacy, accessibility, sustainability

Hands-On Activities:

1. Convert app to PWA using service workers

2. Deploy microservice to cloud (e.g., Vercel or Firebase)

3. WASM demo using Rust or C++ modules in JS

PROJECTS DURING THE SEMESTER:

1. Build an e-commerce full-stack PWA

2. Design a scalable chat app using microservices and GraphQL

3. Develop a dashboard with Docker-based deployment and monitoring

4. Create a serverless blog with authentication and GraphQL API

PEDAGOGY:

Mentor must introduce each web development concept by anchoring it to real-world

scenarios such as designing an e-commerce portal, a social networking site, or a live data

dashboard. Frontend and backend topics should be taught through progressive, hands-on

projects. Emphasis should be placed on version control, collaborative coding, performance

optimization, and deployment practices. Through the “How to Solve it” approach.

RECOMMENDED TEXTBOOKS:

1. Stoica & Tanenbaum, Distributed Systems: Principles and Paradigms

2. MacDonald, Pro ASP.NET Core 3

3. Martin Fowler, Patterns of Enterprise Application Architecture

4. Mozilla MDN: https://developer.mozilla.org

5. Google Web Fundamentals: https://web.dev

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester VI

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-604 Course Title: Computer Graphics and Visualization

using Java

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course introduces the principles and practices of computer

graphics, focusing on both 2D and 3D graphics programming using Java. Students will learn

fundamental algorithms for drawing, transformations, clipping, and rendering, while exploring

color models, projections, and shading techniques. Through hands-on coding, visualization

exercises, and mini-projects, learners will develop the ability to build interactive visual

applications, apply geometric transformations, and implement animation and visualization

techniques for real-world scenarios.

LEARNING OUTCOMES:

1. Understand fundamental concepts of computer graphics and visualization.

2. Learn 2D and 3D graphics programming using Java.

3. Implement foundational graphics algorithms and transformations.

4. Build interactive Java-based visual applications.

5. Apply visualization techniques for rendering, clipping, and animation.

MODULE - I FUNDAMENTALS OF COMPUTER GRAPHICS

Introduction to Computer Graphics and its applications, Raster vs Vector graphics,

Color models: RGB, CMYK, HSV, Java 2D API and Graphics2D class, Drawing

shapes (lines, ovals, rectangles), Raster graphics concepts: Pixels, resolution,

frame buffers, Basic scan conversion algorithms for line and circle drawing

Hands-On Activities:

1. Drawing shapes using Java 2D API (drawLine, drawRect, drawOval)

2. Color manipulation using RGB models

3. Implement and visualize DDA and Bresenham algorithms in Java

MODULE - II GRAPHIC PRIMITIVES

Concept of graphic primitives: points, lines, circles, ellipses, Algorithms: DDA,

Bresenham (line/circle), Midpoint ellipse, Area filling: Boundary fill, Flood fill, Scan-

line fill, Aliasing and filtering: Sampling, halftoning, anti-aliasing techniques

Hands-On Activities:

1. Java implementation of area filling algorithms

2. Visual demonstration of aliasing and anti-aliasing

3. Real-time shape drawing and user interaction

MODULE - III GEOMETRIC TRANSFORMATIONS

2D and 3D transformations: Translation, Scaling, Rotation, Shearing, Reflection,

Homogeneous coordinate system, Matrix representation and composite

transformations

Hands-On Activities:

1. Implement 2D transformations with GUI controls

2. Animate geometric objects undergoing multiple transformations

3. Visualize composite transformations using Java Graphics2D

MODULE - IV VIEWING & CLIPPING TRANSFORMATIONS

Projections: Parallel, Orthographic, Oblique, Isometric, Perspective projections:

Vanishing points, 1-point, 2-point, 3-point, Clipping techniques: Cohen–

Sutherland, Cyrus–Beck

Hands-On Activities:

1. Visualize various projections using Java 3D

2. Implement Cohen–Sutherland line clipping

3. Create a simple viewport to clip and render a 3D object

MODULE - V THREE-DIMENSIONAL OBJECT REPRESENTATION

Polygon meshes and plane equations, Curves and surfaces: Bezier curves, Hermite

interpolation, Hidden surface removal: Z-buffer, scan-line, Painter’s algorithm,

Shading models: Flat, Gouraud, Phong

Hands-On Activities:

1. Render Bezier curves and control points

2. Simulate 3D object rotation with shading

3. Implement Z-buffer-based hidden surface removal in Java

PROJECTS DURING THE SEMESTER:

1. Interactive Paint Application using Java 2D and raster graphics algorithms

2. 3D Wireframe Visualizer with projection and transformation support

3. Graph Coloring Simulator with user input and visual feedback

4. Bezier Curve Editor with real-time rendering and control-point manipulation

5. Polygon Clipping Tool for visualizing line and area clipping in 2D/3D scenes

PEDAGOGY:

Mentor must link each computer graphics concept to real-world uses such as drawing

tools, interactive dashboards, or simple games. Topics like coordinate systems,

transformations, and animation should be taught through progressive Java-based

projects using AWT, Swing, and JavaFX. Visualization should involve relatable datasets

to make concepts tangible. The “How to Solve it” approach should guide problem

breakdown, coding, debugging, and performance tuning, with emphasis on collaboration

and version control.

RECOMMENDED TEXTBOOKS:

1. Foley, J.D., et al., Computer Graphics: Principles and Practice, Addison-Wesley

2. Hearn, D. & Baker, M.P., Computer Graphics with OpenGL, Pearson Education

3. Hill, F.S., Computer Graphics Using OpenGL, Pearson Education

4. Rogers, D.F., Procedural Elements for Computer Graphics, McGraw-Hill

5. Watt, A., 3D Computer Graphics, Addison-Wesley

UNIVERSITY OF JAMMU

Four Year Innovative Undergraduate Program

(Design Your Degree)

B. Tech. IT (Artificial Intelligence & Mathematical Innovations)

Semester VI

(For the session 2025, 2026, 2027)

Course Code: UMJDTT-605 Course Title: Data Structure Design Using Object-

Oriented Programming C\C++

Credits: 06 Maximum Marks : 150

Contact Hours: 12 per Credit Mid Semester Exam : 40

 End Semester Exam : 60

 Project Cumulative : 50

COURSE DESCRIPTION: This course provides a comprehensive study of data structure design

and implementation using both C and C++. Students will learn to apply object-oriented principles

to develop modular, reusable, and efficient data structures, while comparing procedural (C) and

class-based (C++) approaches. Topics include linear and non-linear structures such as arrays,

linked lists, stacks, queues, trees, graphs, and heaps, along with their real-world applications.

Through hands-on coding and mini-projects, learners will gain practical skills in problem-solving,

memory management, and the integration of custom and STL-based data structures into

application design.

Learning outcomes:

1. Understand and apply fundamental data structures using C and C++ programming.

2. Implement object-oriented concepts for designing modular and reusable data structures.

3. Compare C-based and C++ class-based design methodologies.

4. Solve computational problems using linear and non-linear data structures.

5. Develop mini-projects integrating custom data structures with real-world use cases.

MODULE - I FOUNDATIONS OF DATA STRUCTURE DESIGN WITH C AND C++

C basics: structs, pointers, dynamic memory (malloc/free), C++ basics: classes, objects,

constructors/destructors, designing data structures: arrays and structs in C vs. classes in

C++, Memory management: dynamic allocation in C vs. C++

Hands-On Activities:

i. Implement dynamic arrays in both C and C++

ii. Compare memory leaks and management using malloc/free vs. new/delete

MODULE -–II OBJECT-ORIENTED PROGRAMMING FOR DATA STRUCTURES

Core OOP principles: encapsulation, inheritance, polymorphism, Designing ADTs using

C++ classes, Access specifiers and class hierarchies, Struct-based vs. class-based design

comparisons

Hands-On Activities:

i. Create stack and queue as ADTs in C++

ii. Demonstrate function and operator overloading for data types

MODULE - III DESIGNING LINEAR DATA STRUCTURES

Linked lists: singly and doubly linked lists, Stack: array-based and linked-list-based

implementations, Queue: linear, circular, and linked-list-based, OOP design:

encapsulation, polymorphism in stack/queue operations

Hands-On Activities:

i. Build linked lists using structs and classes

ii. Compare performance and use-cases of different queue implementations

 MODULE - IV DESIGNING NON-LINEAR DATA STRUCTURES

Binary trees and binary search trees (BSTs), Graph representations: adjacency matrix vs.

list, Heaps: min-heap and max-heap as priority queues, Use of inheritance and

polymorphism in tree and graph designs

Hands-On Activities:

i. Implement tree traversals (inorder, preorder, postorder)

ii. Simulate BFS/DFS using graph classes in C++

iii. Use heaps for task scheduling

MODULE - V REAL-WORLD DATA STRUCTURE APPLICATIONS

Design patterns in DS: Iterator, Strategy, Composite, Sorting and searching algorithms

using OOP, Introduction to Standard Template Library (STL), Boost, modern C++ features

Mini-project planning: social network, scheduler, etc.

Hands-On Activities:

i. Implement sort/search functions with performance comparison

ii. Use STL for advanced DS design and manipulation

PROJECTS DURING THE SEMESTER:

1. Build a custom task scheduler with priority queues and linked lists

2. Create a graph-based social network explorer

3. Develop an STL-enhanced application like a mini-database manager

PEDAGOGY:

Mentor must introduce each data structure by anchoring it to real-life problem contexts
such as task scheduling, social networks, or file systems. Concepts like stacks, queues,
trees, and graphs should be taught using both C and C++ implementations, allowing
students to compare procedural and object-oriented design approaches. Emphasis should

be placed on visualization, modular coding, and hands-on practice to strengthen problem-
solving abilities. Through the “How to Solve it” approach, students should be encouraged
to identify the most suitable data structure for a given scenario and design efficient,
reusable code structures naturally—rather than learning them in isolation.

RECOMMENDED TEXTBOOKS:

1. Yashavant Kanetkar, Let Us C, BPB Publications (2016)

2. E. Balagurusamy, Object-Oriented Programming with C++, McGraw Hill (2007)

3. Supplementary Textbooks:

4. Michael T. Goodrich, R. Tamassia, Data Structures and Algorithms in C++, Wiley (2014)

5. Y. Langsam, M. Augenstein, A. Tenenbaum, Data Structures Using C and C++, Prentice

Hall

6. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education

