UNIVERSITY OF JAMMU COURSE STRUCTURE FOR MASTERS DEGREE PROGRAMME IN ZOOLOGY

The Courses of study prescribed for 1st to 4th semesters/ Master's Degree Programme under CBCS in the subject of Zoology (Session 2023-25)

Semester	Course Code	Course Title	Credits	Nature of Course	% of Change
_	PSZ01C-101	Ecology & Environmental Biology	91	CORE	
	PSZOTC-102	Fundamentals of Genetics	4	CORE	•
	PSZOTC-103	Jehthyology	4	CORE	
	PSZOTC 104	Immunology	2	CORE	
	PSZOTC-105	An Introduction to Insect Diversity	2	CORE	•
1	PSZOPC-106	Lab Course -l	4	PRACTICAL	
A-60.	PSZOPC-107	Lab Course -II	4	PRACTICAL	
	F.52.(/F.C-19/)	Total credits	24		
	P\$ZOPC-106 E	Based on Theory Course No.101 & 103			
	PSZOPC-107 I	Based on Theory Course No.102, 104 & 105			
	PSZOTC- 201		4	CORE	
	PSZOTC-202	Functional Anatomy of Animals	4	CORE	•
	PSZOTC-203	Basic Endocrinology	4	CORE	-
	PSZOTC-204	Biotechnology	2	CORE	
	PSZOTC-205	Biodiversity, Conservation & Management	2	CORE	· .
11	PSZOPC-206	Lab Course -I	4	PRACTICAL	
	PSZOPC-207	Lab Course -II	4	PRACTICAL.	
	1.07.01.0-207	Total credits	24		
	PSZOPC-2061		250/		
	PSZOTE-301	Based on Theory Course No. 202, 204 & 205 Limnology	4	ELECTIVE	25%
	and the second second second second second	Fish & Fisheries	4	ELECTIVE	25%
	PSZOTE-302 PSZOTE-303	Molecular Genetics & Cytogenetics	4	ELECTIVE	25%
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4	MOOC	
111	PSZOTO-304		4	CORE	
111	PSZOTC-305	Biosystematics, Taxonomy & Evolution	4	CORE	-
	PSZOTC-306	Lab Course –I	4	PRACTICAL	
	PSZOPC-307 PSZOPC-308	Lab Course -II	4	PRACTICAL	-
	PSZOTE-309	Eco-friendly pest management	2	ADDED COURSE	•
	PO-107E 210	Aquarium fish keeping	2	SKILL COURSE	•
	PSZOTE-310	Total credits	26		
	PSZOPC-307	Based on Theory Course No.301/302/303 Based on Theory Course No.305 & 306			
		Reproductive & Developmental Biology	4	CORE	•
	PSZOTC-401	Aquaculture	2	CORE	
	PSZOTC-402	Applied Microbiology	2	CORE	
	PSZOTC-403	Animal Physiology	4	CORE	
	PSZOTC-404	Lab Course -I	4	PRACTICAL	•
	PSZOPC-405	Lab Course -II	4	PRACTICAL	
	PSZOPC-406		6	FIELDPROJECT/D	7.
1117	PSZODC-407	Dissertation		ISSERTATION	4
IV		*Biological Anthropology	4	OPEN	
ļ	PSZOTO-408	Total credits	30		
	1000000 405 D	Based on Theory Course No. 401 & 402			^
- 1	PSZOPC-403 E	Based on Theory Course No. 493 & 404	101		
	PSZOPC-400 B	arned by the students	104		11 1

*For students of other Departments.

DAC members

(Head of the Department)
4. Rath 5.

Programme specific outcomes

The Programme has been designed to enable the students to understand

- vital aspects of biological processes like Comparative Animal physiology, Endocrinology, Microbiology, Environmental Biology, Evolution, Animal Biodiversity, Conservation etc.
- the application of biological sciences in other entrepreneurship skill enhancing fields viz.,
 Apiculture, Fisheries, Aquaculture, Aquarium Fish keeping, Vermiculture etc.

Based on the knowledge acquired, students would get an opportunity

- to find jobs as wildlife biologists, Zoo Curator, Wildlife educators, Fishery Managers, Sericulture officers, Forensic experts etc.
- to be inducted in both government and private higher and high education departments as teaching professionals.
- to set up new ventures as entrepreneurs in the fish/pond culture, aquarium keeping, formulation of value added edible animal products, setting of Apiary, setting of clinical diagnostic labs as technical expert.
- to qualify various competitive and research aptitude exams like NET/GATE/ IAS/IFS/KAS and in other allied fields.

SEMESTER-I

Students would develop an understanding with respect to:

PSO1: the basic concepts and components of various ecosystems with respect to habitat, community structure, biodiversity and conservation strategies.

PSO2: the nature and structure of genetic material, basic genetic principles and processes involved.

PSO3: the fish taxonomy, morphology, physiology and adaptive strategies.

PSO4: the concepts of immunity and immunological processes.

PSO5: the morphology, ecology and physiology of insects.

Course No. PSZOTC-101
CREDITS: 4
CREDITS: 4
Course Title: Ecology & Environmental Biology
MAXIMUM MARKS: 100

a) Minor Test I: 20
b) Minor Test II: 20
c) Major Test: 60

Syllabus for the examination to be held in December, 2023; December, 2024 and December, 2025

Course Outcomes

Students would develop an understanding with respect to:

❖ CO1: the concept of basic theories and principles of ecology.

CO2: critical understanding of the concepts like population dynamics, community

structure and abundance, species interactions, energy flow, productivity, succession,

biological invasions etc.

❖ CO3: critical understanding of the human influence on environment.

CO4: the practical aspects based on research/field trainings.

SYLLABUS

Unit- I (12 hrs.)

- 1.1 Concept of eco-system : Ecological habitat, niche & Ecological equivalents
- 1.2 Hydrological cycle and its Impact on Environment & biota.
- 1.3 Energy flow in an ecosystem & mineral cycling (C,N,P)
- 1.4 Mineral cycling: Carbon ,Nitrogen ,Phosphorus
- 1.5 Primary & Secondary productivity and Methods of determination
- 1.5 Limiting factors: Law of minimum, Law of tolerance

Unit –II (13 hrs.)

- 2.1 Organization of communities:
 - 2.1.1 Biotic community concept
 - 2.1.2 Intra-community classification
 - 2.1.3 Patterns in communities
- 2.2 Ecological dominance, species diversity, Ecotones & Edge effect
- 2.3 Succession
 - 2.3.1 Types
 - 2.3.2 Mechanism
 - 2.3.3 Concept of climax
- 2.4 Terrestrial Biota & Permeants
- 2.5 Soil subsystem

Unit-III (13 hrs.)

- 3.1 Characteristics of Population
 - 3.1.1 Size & density
 - 3.1.2 Dispersal & Dispersion
 - 3.1.3 Age structure
 - 3.1.4 Natality & Mortality
 - 3.1.5 Life tables
- 3.2 Isolation & territoriality
- 3.3 Biological Invasions
- 3.4 Species interaction
 - 3.4.1 Negative: Competition, Predation, Parasitism
 - 3.4.2 Positive: Commensalism, Mutualism

Unit – IV (13 hrs.)

- 4.1 Sources and Uses of Non-conventional energy
- 4.2 Remote sensing: Definition, Importance and application
- 4.3 Bio-indicators
- 4.4 Bio-remediation
- 4.5 Sustainable development, natural resources management in changing environment

Unit-V (12 hrs.)

- 5.1 Biodiversity
 - 5.1.1 Definition, assessment and management
- 5.2 Natural resources
 - 5.2.1 Wild life and its management
 - 5.2.2 Aquatic resources: Freshwater, Marine and Esturine
- 5.3 Conservation Biology
 - 5.3.1 Principles
 - 5.3.2 Keystone species
 - 5.3.3 Protected Areas
 - 5.3.4 Acts & Related International Conventions

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i) Major test will have two sections (A & B)
- ii) Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii) Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested:

- 1. Phillipson, J. 1966. Ecological Eneregetic, Edward Arnold Ltd. London.
- 2. Odum, E.P. 1970. Ecology, Amerind Publ. Co. New Delhi.
- 3. Odum, E.P. 1971. Fundamentals of Ecology, W.B. Saunders, USA.
- 4. Kormondy, E.T. 1971. Concept of Ecology. Prentice Hall of India, New Delhi.
- 5. Ricklefs, R.E. 1973. Ecology. Thomes Nelson and sons ltd.
- 6. Wiegert, R.G. 1976. Ecological Energetic Dowden, Hutchinson & Ross. Inc. Pennsylvania.
- 7. Scuthwick, C.H. 1976. Ecology and the quality of our environment. D. Van Nestrand
- 8. Colinbaux, P.A. 1985 Introduction to ecology. John Wiley & Sons
- 9. Strinberg, Christian E. 2003. Ecology of humic substances in freshwater, Springer publishers.
- 10. Scheffer, Marten. 2004. Ecology of shallow lakes.
- 11. M.P. Sinha, Soma Dey, Bijaj. S. Singh. 2004. Conservation of biodiversity and Natural Resources. Daya Publ. House Delhi.
- 12. Odum, Eugene P. 2005. Fundamentals of Ecology. Publishers Cenagelearing.
- 13. Wilkinson, D.M.2007. Fundamental Resources in Ecology: An Earth System Approach. Oxford Univ. Press. UK.
- 14. Fahey, J.J, and Knapp, A.K. 2007. Principles and Standards for measuring primary production. Oxford Univ. Press. UK.
- 15. Grant, W.E. and Swanmack, T.M. 2008. Ecological Modeling. Blackwell Publ. House.
- 16. Bhatia, S.C. 2008. Ecology and sustainable development, Atlantic Publishers.
- 17. Arumugar N, 2014. Concept of Ecology, Saras Publishers, year-2014.
- 18. Sharma, P.B. 2018. Ecology & Environment(13th edition) Rastogi-Publishers,
- 19. Molen, Manciel C. 2018. Ecology Publishers- Mc-Grew Hill Year-1048.
- 20. Oswald J. Schmitz. 2018. The New Ecology: E-book 9781400883462
- 21. Gelfand, Alan, E, Fuentes, Montserrat, Hoeting, Jennifer, A, Smith, Richard Lyttleton. 2019. Handbook of Environmental and Ecological Statics. Publisher Chappman and Hall/CRC.
- 22. William D. Bowman and Sally D. Hacker. 2020. Ecology Publisher: Oxford University Press.

List of Practicals

Course code: PSZOPC-106

(Based on Theory course No. 101 &103)

- To determine minimum size of quadrat to be laid down for study of community.
- To determine minimum number of quadrat to be laid down for study of community.
- Texture of different types of soils.
- To estimate the temperature and moisture contents of the different soils samples at different profile. (Surface, 10 cm, 20 cm, 30 cm).
- To study physical characteristics of water (temperature, depth, velocity, pH, colour).
- To find out the amount of CO₂ in water sample.
- To find out the amount of DO from water sample.
- To find out the amount of Calcium in water sample.
- To find out the amount of CO₃ and HCO₃ in water sample.
- To find out the amount of Ca²⁺ and Mg²⁺ in water sample.
- To analyze water sample for amount of TDS.
- To analyze water sample for amount of TSS.
- To identify the local macrophytes.
- Estimation of Primary productivity.
- Estimation of SOM.
- Estimation of BOD.
- Identification of rocks and minerals on basis of physical characters.
- Determination of Mean, Mode and Median in different data (Individual, discrete and continuous data)
- Calculation of Standard deviation and Chi square test.
- Estimation of dissolved organic matter.

Course No. PSZOTC-102

CREDITS: 4

Time Duration: 2hrs and 30 mins.

Course Title: Fundamentals of Genetics

MAXIMUM MARKS : 100

Minor Test I : 20

b) Minor Test II : 20

c) Major Test : 60

Syllabus for the examination to be held in December, 2023; December, 2024 and December, 2025

Course Outcomes

Students would develop an understanding with respect to:

CO1: basic concepts of chromosomes, their special forms and aberrations.

* CO2: structure of genetic material, basic hereditary principles; mutations and DNA repair mechanism.

CO3: fundamentals of DNA replication, protein synthesis and control of gene expression..

SYLLABUS

Unit-I Structure and organization of chromosomes

(13 hrs.)

- 1.1 Structure of chromatin
 - 1.1.1 heterochromatin, euchromatin,
 - 1.1.2 Nucleosome model
- 1.2 Chromosome structure:
 - 1.2.1 Prokaryotes
 - 1.2.2 Eukaryotes
 - 1.2.3 Telomere structure
 - 1.2.4 Centromere
 - 1.2.5 Kinetochore
- 1.3 Specialized chromosomes:
 - 1.3.1 Lampbrush chromosomes
 - 1.3.2 Polytene chromosomes
- 1.4 Mitochondrial Genome and Chloroplast Genome

Unit- II Numerical and structural chromosomal Variations in Human

(13 hrs.)

- 2.1 Numerical Changes and their genetic implications
 - 2.1.1 Polyploidy
- 2.1.2 Aneuploidy
- 2.2 Numerical Change associated disorders in humans
- 2.3 Structural chromosome alterations
 - 2.3.1 Deletions
 - 2.3.2 Duplications
 - 2.3.3 Inversions
 - 2.3.4 Translocations
- 2.4 Structural changes associated disorders in humans

Unit-III DNA, Mutation, DNA repair and transposons

(13 hrs.)

- 3.1 DNA
- 3.1.1 Historical Milestone
- 3.1.2 DNA as genetic material
- 3.1.3 Structure of DNA: nucleotides and various models
- 3.1.4 Types of DNA
- 3.1.5 Repetitive DNA

- 3.2 Mutation
- 3.2.1 Types, causes and detection
- 3.2.2 Loss of function, gain of function
- 3.2.3 Germinal verses somatic mutants
- 3.2.4 Insertional mutagenesis
- 3.3 DNA Repair and mechanisms
- 3.4 Transposons
 - 3.4.1 Transposons in prokaryotes
 - 3.4.2 Transposons in eukaryotes

Unit –IV Fundamental processes-I (12 hrs.)

- 4.1 DNA replication and Recombination
 - 4.1.1 Origin of replication, enzymes involved and replication fork
 - 4.1.2 DNA replication in eukaryotes and prokaryotes
 - 4.1.3 Extra chromosomal replicons
 - 4.1.4 Homologous and site specific recombination
- 4.2 RNA synthesis and processing
 - 4.2.1 Transcription factors
 - 4.2.2 Transcription in Prokaryotes and Eukaryotes
 - 4.2.3 RNA processing: RNA splicing, polyadenylation, RNA editing
 - 4.2.4 Types of RNA

Unit -V Fundamental processes-II (12 hrs.)

- 5.1 Protein Synthesis and processing
 - 5.1.1 Ribosome
 - 5.1.2 Formation of initiation complex
 - 5.1.3 Elongation and termination
 - 5.1.4 Genetic Code
 - 5.1.5 Activation of tRNA
 - 5.1.6 Translational inhibitors
 - 5.1.7 Post translation modifications
- 5.2 Control of gene expression
 - 5.2.1Regulation of gene expression in prokaryotes
 - 5.2.2 Regulation of gene expression in eukaryotes
 - 5.2.2.1 Role of chromatin in gene expression and gene silencing

Note for Paper Setting

(12 hrs.)

Examination Theory	Syllabus to be covered	Time allotted for Exam	% weightage (marks)
	in examination		
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

C. No. PSZOTC-102, Fundamentals of Genetics (2023-25)

Books Suggested

- 1. Sinnett, E.W., Dunn, L.C. and Debzhanski, Th (1958): Principles of genetics. Kugakusha. Co. Inc. Ltd. Japan.
- 2. Burnham, C.R. (1962): Discussions in Cytogenetics Burgess Publ. Co. Minneapolis.
- 3. Swanson, R.C.P. Mertz, T. and Young, W.J. (1967): Cytogenetics, Prentice Hall of India, Pvt. Ltd.
- 4. Garber, G.B. (1972): Cytogenetics. McGraw Hill. Pub. Co. Ltd.
- 5. Strickbarger, M.W. (1976): Genetics. Mc. Millan Publ. Co. Inc. New York.
- 6. Gardner and Snustad. J.W. & Sons. (1981). Principles of Genetics.
- 7. A.G. Atherly, J.R. Girton J.F. McDonald. Saunders College Publ. USA. (1999). The Science of Genetics
- 8. Miglani. Narosa Publ. House . New Delhi. (2011). Fundamentals of Genetics
- 9. Terry Brown, Taylor and Francis Group. USA.(2012). Introduction to Genetics: A Molecular Approach
- 10. Hartl and Ruvolo (2012). Analysis of genes and genomes, 8thedittion.
- 11. E.J. Gardner, M.J. Simmons and D.P. Srustad. J.W. Sons Publ. Singapore.(2012). Principles of Genetics 8th Ed.
- 12. William Klug (2016) .Essentials of genetics 9th edition Pearson education ltd.
- 13. Lynn B. Jorde , John C. Carey MD MPH and Michael J. Bamshad M. D. Medical Genetics 2019. Publisher: Elsevier ISBN 978-0323597371.
- 14. D. Peter Snustad. 2019. Principles of Genetics, 7th Edition. Publisher: John Wiley.
- 15. Daniel and Bruce. 2019 Genetics analysis of Genes and Genomes. Publisher: Jones and Bartlett Learning, Llc.

C. No. PSZOTC-102, Fundamentals of Genetics (2023-25)

List of Practicals

Course code: PSZOPC-107 (Based on Theory Course No. 102, 104 & 105)

- To study different parts and working principle of bright field microscope.
- Study of general principles and BSL guidelines for working in molecular genetics lab.
- To study the general morphology of Chironomus larva.
- To prepare the temporary mount of salivary gland of Chironomus larva and study the polytene chromosome structure.
- To study the morphological differences between male and female grasshopper.
- To dissect out the male grasshopper to expose its testicular tubules so as to study the different stages of meiosis.
- To study the procedure of blood sample collection and storage from different individuals.
- To carry out the DNA extraction from the stored blood samples by using organic method.
- Qualitative and quantitative analysis of extracted DNA samples.
- To carry out the agrsose gel electrophoresis of the provided DNA sample.

Course No. PSZOTC-103

CREDITS: 4

Time Duration: 2hrs and 30 mins.

Course title: Ichthyology

MAXIMUM MARKS: 100

Minor Test I: 20

b) Minor Test II: 20

c) Major Test: 60

Syllabus for the examination to be held in December, 2023; December, 2024 and December, 2025

Course Outcomes

Students would develop an understanding with respect to:

- **CO1:** the fish classification, structure and adaptations in relation to diverse habitat conditions in fishes.
- **CO2:** the basic concepts of feeding, reproductive & respiratory ecology in fishes
- CO3: parental care and adaptive capabilities to special environment in fishes etc.

SYLLABUS

UNIT I Morphology and classification

(13 hrs.)

- 1.1 Morphological studies
 - 1.1.1 Distinctive characteristics of fishes
 - 1.1.2 Body form and its diversity
 - 1.1.3 Fins
 - 1.1.3.1 Theories of origin of fins
 - 1.1.4 Structure skeletal support, modification and functions of paired fins
 - 1.1.5 Structure skeletal support, modification and functions of un-paired fins
- 1.2. Outline classification of fishes with special reference to distinctive features,

geographical distributions, classification and typical examples of the following subdivisions:

- 1.2.1 Chondrichthyes
- 1.2.2 Actinopterygi
- 1.2.3 Crossopterygi
- 1.2.4 Dipnoi

Unit- II Sense organs and some special features

(13 hrs.)

- 2.1 Scales: types, structure and functions of scales
- 2.2 Coloration: chromatophores, pigments and biological significance of coloration in fishes
- 2.3 Biolumniscence in fishes and its significance
- 2.4 Electric organs: their structure and use in fishes.
- 2.5 Venomous and poisonous fishes
- 2.6 Sense organs
 - 2.6.1 Eye
 - 2.6.2 Lateral line
 - 2.6.3 Internal ear

Unit-III Feeding and Respiration

(13 hrs.)

- 3.1 Alimentary canal and its diversity in fishes
- 3.2 Food, feeding habits and feeding adaptations
- 3.3 Respiratory organs
 - 3.3.1 Structure, modifications and functions of gills
 - 3.3.2 Structure and development of air breathing organs in fishes
 - 3.3.3 Structure and function of swim bladder

Unit-IV Reproduction and Development

- 4.1 Reproductive organs and Accessory sex organs
- 4.2 Secondary sexual characters
- 4.3 Oviparity, vivparity (Aplacental and Placental)
- 4.4 Nest building and parental Care
- 4.5 Types of eggs
- 4.6 Hatching
- 4.7 Metamorphosis

Unit-V Adaptations to special conditions of life

(13 hrs.)

(12 hrs.)

- 5.1 Deep sea fishes
- 5.2 Hill stream fishes
- 5.3 Cave dwelling fishes
- 5.4 Arctic and Antarctic fishes (avoidance of freezing)
- 5.5 Migration in fishes
- 5.6 Osmoregulation in fishes

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested:

- 1. S.F. Harmer, W.A Herdman, T.W. Bridge, G.A. Boulenger. Discovery Publishing House New Delhi (1999). Classification of fishes, Volume
- 2. Lynwood, S. Smith. Narendra Publ. House, Delhi. (2003). Introduction to the fish physiology.
- 3. Albert C.L.G Gunther, Arihant Publishing House, Jaipur (2004). Study of Fishes
- 4. Arvind Kumar and PushaplataDubey. Daya Publ. House, Delhi. (2006). Fish Management and Aquatic Environment.
- 5. Lagler, Bardock, Miller & Possino, John Wiley & Sons, N.Y., London: (2012). Icthyology, 2nd Ed.
- 6. K.C BadapandaNarendra Publishing House, Delhi(2012). Fishery Biology
- 7. Vasanth Kumar, Daya Publ. House, New Delhi. (2013). Advances in Aquatic Ecology.
- 8. B N Yadav. Daya Publishing House, Delhi (2016). Fish and Fisheries.
- 9. KC Jayaram. Narindra Publishing House, Delhi (2017). Fundamentals of fish taxonomy.
- 10. R. Hamilton Publisher Forgotten books (2018) Ichthyology.
- 11. D. K. Mukherjee and J.V.S. Rauthan Publisher Medtec (2019) Ichthyology: An Introduction to Fish Science.

List of Practicals

Course code: PSZOPC-106

(Based on Theory course No. 101 &103)

- To study the general characters, classification and morphology of fishes.
- To study the body forms in fishes.
- To study the fin modifications with special reference to paired and unpaired fins.
- To study the modification of Lateral line in fishes.
- To study the skeleton system of Teleost fish.
- To study the Electric, Poisonous and Venomous organs in fishes.
- To study the classification and general characters of Dipnoi with examples.
- To study the structure of different types of gills, accessory respiratory organs and gill rakers in fishes.
- To study the modifications in Hill stream fishes.
- To study the different types of swim bladder in fishes.
- To study the structure of Weberianossicles in different fishes.
- To study the adaptations/modification in Deep sea and Cave dwelling fishes.
- To study the different types of scales in fishes.
- To study the different types of eggs in fishes.
- To study the reproductive organs and secondary sexual characters in fishes.

Semester-I

30

Course No. PSZOTC 104 CREDITS: 2

Time Duration: 2hrs

Course Title: Immunology
MAXIMUM MARKS : 50
a) Minor Test I : 10
b) Minor Test II : 10

Major Test

Syllabus for the examination to be held in December, 2023; December, 2024 and December, 2025

c)

Course Outcomes

Students would develop an understanding with respect to:

- CO1:the basic knowledge about immune system and its role in improving general health and immunity.
- ❖ CO2:critical concepts of immune system, immune cells and immunological techniques
- CO3:tumour immunology and transplantation immunology.

SYLLABUS

UNIT- I Introduction to immune system

(12 hrs.)

- 1.1 Historical Background
- 1.2 Innate and adaptive immunity
- 1.3 Immune cells and organs of immune system
 - 1.3.1 Type of cells
 - 1.3.2 Role of Immune cells in immunity
 - 1.3.3 Primary, Secondary and Tertiary tissues and organs of immune system.
- 1.4 B-Lymphocyte and T-Lymphocyte
- 1.5 General Properties of Cytokines and Chemokines

UNIT-II Humoral Immunity and Cell Mediated Immunity

(13 hrs.)

- 2.1 Antigen, Antigenicity and Immunogenicity.
- 2.2 Antibody: Types, Structure, Function and generation of diversity.
- 2.2 Signal Transduction:
 - 2.2.1 B-Cells
- 2.3 Monoclonal antibodies
- 2.4 Antibody engineering

UNIT-III Cell mediated immunity

(13 hrs.)

- 3.1 B-cell and T-cell Activation, Differentiation and Memory
- 3.2 Major Histo-Compatibility complex and Antigen presentation
- 3.3 Tolerance, Autoimmunity and Transplantation
- 3.4 Hypersensitivities
- 3.5 Role of Immune system in Cancer
- 3.6 Immunological Techniques
 - 3.6.1 ELISA
 - 3.6.2 Immunoprecipitation, Immuno blotting,

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	10
Minor Test II	21% to 40%	1 Hr.	10
Major Test	41% to 100%	2Hrs	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

BOOKS SUGGESTED

- 1. William E.Paul.(1984).Fundamental Immunology.
- 2. Janis Kuby, Barbara A. Osborne, (1992). Immunology.
- 3. Abul K. Abbas and Andrew H. Lichtman, (2001). Basic Immunology: Functions and Disorders of the Immune System.
- 4. Lauren Sompayrac, (2001). How the immune system works.
- 5. Matthew Helbert and Roderick Nairn, (2002). Immunology for Medical Students
- 6. Knneth Murphy, Paul Travers, Mark Walpart. (2008). Janeways Immunobiology, 7th edition
- 7. Arumugan N, Dulsy Fatima (2015). Immunology.Saras Publications.
- 8. Abul K Abbas, Andrew H Lichtman and Shiv Pillai. (2018). Cellular and Molecular Immunology. Elsevier.
- 9. Alex Collins. (2019). Transplantation Immunology Publisher: Foster Academics.

List of Practicals:

Course code: PSZOPC-107

(Based on Theory Course No. 102, 104 & 105)

- To study the different types of cells involved in immune system of human beings.
- To study the different types of immunoglobins.
- To perform the hemagglution assay for ABO Blood group typing determination and Rh factor.
- To learn the techniques of immune electrophoresis.
- Amplification of Interleukin-28b gene Using Polymerase Chain Reaction assays.
- Electrophoresis of interleukin-28 gene PCR product.
- To determine the concentration of antigen by sandwich ELISA method.
- To determine Total Leukocytes Count (TLC) of the given sample.
- To determine Differential Leukocytes Count (DLC) of the given sample.
- To study the 3D structural organisation of various proteins by using bioinformatics tools.

Course No. PSZOTC-105
CREDITS: 2
MAXIMUM MARKS: 50
Time Duration: 2hrs
a) Minor Test I: 10
b) Minor Test II: 10
c) Major Test: 30

Syllabus for the examination to be held in December, 2023; December, 2024 and December, 2025

Course Outcomes

Students would develop an understanding with respect to:

CO1: the basic knowledge about the morphology, taxonomic diversity and physiology of insects.

CO2: Critical understanding of the key concepts of insect ecology, biology and its relationship with various

biotic and abiotic factors.

CO3: practical and applied aspects of entomology.

SYLLABUS

Unit- I Insects General Organization and Classification (10 hrs.)

- 1.1 General characters, classification
- 1.2 Bionomics of insect orders
 - 1.2.1 Subclass Apterygota, Thysaneura, Collembola
 - 1.2.2 Subclass Pterygota:
 - 1.2.2.1 Exopterygota: Odonata, Orthoptera, Dictyoptera, Dermaptera, Hemiptera, Homoptera
 - 1.2.2.2 Endopterygota: Lepidoptera, Diptera, Coleoptera, Hymenoptera

Unit- II Morphology of insects (10 hrs.)

- 2.1 Head
 - 2.1.1 Structure
 - 2.1.2 The mouth parts and their diversity
 - 2.1.3 Types of Antennae in insects
 - 2.1.4 Compound eye
- 2.2 Thorax
 - 2.2.1 Structure
 - 2.2.2 Leg modifications in insects
 - 2.2.3 Wings and wing coupling mechanism
- 2.3 Abdomen and Reproductive structures
- 2.4 Chemoreceptor and Mechanoreceptor

Unit-III Insect Physiology and Specilized structures (10 hrs.)

- 3.1 Insect Integument: structure and function
- 3.2 Metamorphosis: its types and regulation
- 3.3 Diapause in insects
- 3.4 Stridulation in insects
- 3.5 Defence mechanism
- 3.6 Introduction to various physiological systems with special reference to digestive and nervous system of cockroach

C. No. PSZOTC-105, An Introduction to Insect Diversity (2023-25)

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	10
Minor Test II	21% to 40%	1 Hr.	10
Major Test	41% to 100%	2Hrs	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

Books Suggested

- 1. Horowitz A.R. and Ishaya I. (2004). Insect pest management Springer. Rajkamal electric press
- 2. Timothy, (2007). Marc, Insect Ecology. Marc J. Klowden Elsevier Inc.
- 3. Marc J. Klowden Elsevier Inc. (2007). Physiological Systems in Insects.
- 4. Waldbauer, (2007). The Handy Insect G.K. Book. Jaico Publ. House.
- 5. Pedigo and Rice, (2009). Entomology and Pest Management. Publ. PHI Learning, Pvt. Ltd.
- 6. R.F. Chapman, (2013) 2nd Ed. The Insect; Structure and Function
- 7. Gullan and Cranston. (2014). 5th Edition. The Insects. Wiley Blackwell.
- 8. Rivers, Dand B.(2017). Insects Jaico Publishing House
- 9. Lanham, (2018). The Insects. Gene Tech Books.
- 10. Robert G Foottit and Peter H. Adler (2018) . Insect Biodiversity: Science and Society. Wiley-Blackwell.
- 11. LaichattiwarMukeshAnandrao: (2020) Introduction to Insects and their diversity. Delve Publishing House.

C. No. PSZOTC-105, An Introduction to Insect Diversity (2023-25)

List of Practicals:

Course code: PSZOPC-107

(Based on Theory Course No. 102, 104 & 105)

- To study, classify and comment upon the orders of subclass Apterygota: Thysonura and Collembola.
- To study, classify and comment upon the orders of subclass Exopterygota: Odonata, Orthoptera, Dictyoptera, Dermaptera and Homoptera.
- To study, classify and comment upon the orders of subclass Endoterygota: Lepidoptera, Diptera, Coleoptera and Hymnoptera.
- To study the diversity of mouth parts of various insects: Cockroaches, grasshoppers, mosquito, butterfly, bug, housefly, honeybee etc.
- To study various types of antennas in insects.
- To study the different types of leg modifications in insects.
- To study the different types of larva and pupae.
- To study the mechanism and groups showing metamorphosis.
- To dissect out and study the digestive system of grasshopper/Cockroach.

SEMESTER-II

Students would develop an understanding with respect to:

FSO-1. the nature and basic concepts of cent blorogy and instrumentation	PSO-1 :	the nature and basic concepts of cell biology and instrumentation
---	----------------	---

PSO-2: a comparative account of structure & functioning of various organs and organ

systems as developed during evolution.

PSO-3: the basic morphology, anatomy, histology, endocrines and their functioning.

PSO-4: the study of biotechnological techniques and their applications.

PSO-5: the concepts of biodiversity and their management.

Course No. PSZOTC-201

CREDITS: 4

Time Duration: 2hrs and 30 mins.

Course Title: Cell Biology & Research Instrumentation

MAXIMUM MARKS : 100
a) Minor Test I : 20
b) Minor Test II : 20
c) Major Test : 60

Syllabus for the examination to be held in May 2024, May, 2025 and May, 2026

Course Outcomes

Students would develop an understanding with respect to:

CO-1: the structural and functional unit of life.

CO-2: the basic concepts of cell biology: cell cycle, cell communication, cell signaling and cell

CO-3: principles and working of various instruments for the study of cell architecture, cellular components and cell machinery.

SYLLABUS

UNIT I Cell: Structure and function

(13 hrs)

- 1.1 Eukaryotic and Prokaryotic cell structure and their differences
- 1.2 Cell Membrane
 - 1.2.1 Structure and models of membrane organization
 - 1.2.2 Composition of cell membrane
 - 1.2.3 Function of cell membrane
- 1.3 Transport across membranes
 - 1.3.1 Active and Passive transport
 - 1.3.2 Endocytosis and Exocytosis
 - 1.3.3 Membrane transport proteins
 - 1.3.4 Pinocytosis and Phagocytosis
 - 1.3.5 Osmosis
- 1.4 Cell Organelles
 - 1.4.1 Golgi Apparatus
 - 1.4.2 Mitochondria
 - 1.4.3 Nucleus
 - 1.4.4 Endo plasmic reticulum
- 1.5 Extracellular Matrix

UNIT-II Cell Cycle, Cell Communication and Cell signaling

(12hrs)

- 2.1 Regulation of Cell Cycle
- 2.2 Cell Communication
 - 2.2.1 General principles of cell communication
 - 2.2.2 Cell adhesion and role of different adhesion molecules
 - 2.2.3 Gap Junctions
 - 2.2.4 Extracellular Matrix, Integrins
- 2.3 Cell signaling
 - 2.3.1 Cell Surface receptors
 - 2.3.2 Signaling through G-protein coupled receptors
 - 2.3.3 Enzyme linked receptor signaling

C. No. PSZOTC 201, Cell Biology & Research Instrumentation (2024-26)

UNIT-III Cell death: Apoptosis

(12hrs)

- 3.1 Cell death in mammals
 - 3.1.1 Role of caspases
 - 3.1.2 Bcl2 family proteins, IAP's
 - 3.1.3 Intrinsic and Extrinsic Pathways
- 3.2 Cell death in *C.elegans*
- 3.3 Cell death in *Drosophila*
- 3.4 Apoptosis targeted therapies
- 3.5 Apoptosis and Cancer, Role of p53

UNIT-IV Tools and Techniques -I

(13hrs)

- 4.1 Electrophoretic techniques
- 4.2 Chromatography techniques
 - 4.2.1 Thin layer chromatography
 - 4.2.2 Affinity chromatography
 - 4.2.3 Liquid and gas chromatography
 - 4.2.4 Planar/ paper chromatography
 - 4.2.5 Ion exchange chromatography
 - 4.2.6 Size exclusion chromatograph
- 4.3 Centrifugation: principles and types

UNIT-V Tools and techniques -II

(13h)

- 5.1 Tools and methods
 - 5.1.1 Bright Field Microscopy, Dark Field Microscopy
 - 5.1.2 Electron microscopy: Transmission Electron microscopy and Scanning Electron microscopy
 - 5.1.3 Fluorescence Microscopy (Principle and Types)
 - 5.1.4 Polymerase Chain Reaction
- 5.2 DNA sequencing Techniques
 - 5.2.1 Sanger Sequencing
 - 5.2.2 Chemical Degradation method
 - 5.2.3 Introduction to NGS
- 5.3 Southern Blotting, Western Blotting, Northern Blotting, Slot Blots and Dot Blot

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested:

- 1. Korenberg, (1974) DNA Replication W.H. / Freeman and Co. San Francisco
- 2. Avers, C.J. (1976.) Cell Biology. D. Van Nostrand, Co. New York.
- 3. De witt (1977.) Biology of the cell- An Evolutionary Approach. Saunders Co.
- 4. Jones and Bartlett, (1980.) Cells: Principle of Molecular Structure and function, Prescott.

C. No. PSZOTC 201, Cell Biology & Research Instrumentation (2024-26)

- 5. De Robertis, E.D.F. and De Robertis, E.M.F. (1981). Cell and Molecular Biology. Saunders International Edition.
- 6. Alberts, (1983) Molecular Biology of the Cell.
- 7. Maniatis (1983). Molecular cloning
- 8. Garland, A. (1983). Molecular Biology of the cell A, Bestrisetical, Garland Pub. Inc. New York.
- 9. Watson et al. (1987) Molecular Biology of Genes Vol I and II.
- 10. Gene- Watson (1987) Molecular biology.
- 11. Smith and E.J. Wood, Chapman & Hall., HongKong. (1992.) Cell Biology
- 12. P.K. Gupta, Rastogi Publ. Merrut. (1994). Cytogenetics, Genetics and Evolution.
- 13. Bruce Melacinki&Freifelder, John and Bartlett Publ. Boston. (1998.) Essentials of Molecular Biology.
- 14. MousamiDebnath, Shashi Jain Publ. Jaipur. (2008) Cell and Molecular Biology,
- 15. Thomas .D.Pollaed et.al.(2017).Cell biology.3rdedn.Elsiver.
- 16. Alberts, Bruce, Hopkins Karen and Johnson, Alexander D. (2019). Essential Cell Biology (Fifth Edition).

C. No. PSZOTC 201, Cell Biology & Research Instrumentation (2024-26)

List of Practicals

Course code: PSZOPC-206

(Based on Theory Course No. 201&203)

- ❖ Handling and operation of following apparatus and equipments:
 - (a) Compound research microscope
 - (b) Electrophoretic Unit
 - (c) Thermocycler
 - (d) Stereo-microscope
- To study the process of mitosis from the onion root tip.
- ❖ Study of stained preparation of mitochondria and golgi bodies under the light microscope.
- Study of stained preparations of mitochondria and golgi bodies under the light microscope
- ❖ Isolation of DNA from Insect tissue.
- Quantification and qualification of DNA.
- Demonstration of polymerase chain reaction.
- ❖ Bioinformatic tools online for analyzing DNA sequences.
- ❖ Demonstration of automated biochemical analyzer.
- Electrophoresis of DNA.

Course No. PSZOTC-202 Course Title: Functional Anatomy of Animals

CREDITS: 4 MAXIMUM MARKS : 100
Time Duration: 2hrs and 30 mins.

a) Minor Test I : 20
b) Minor Test II : 20
c) Major Test : 60

Syllabus for the examination to be held in May 2024, May 2025 and May 2026

Course Outcomes

Students would develop an understanding with respect to:

CO1: comparative functioning of the organ systems across the animal world.

CO2: the insights into developmental and physiological adaptations vs evolutionary strategies.

CO3: coordination of various biological systems within diverse animal groups.

SYLLABUS

UNIT I Movement and Locomotion

(13hrs)

- 1.1 Principles of hydrostatic skeleton
- 1.1.1 Locomotion based on hydrostatic skeleton, with special reference to Coelenterate, Planaria and Nemertina.
 - 1.1.2 Functional significance of coelom in locomotion in Echinodermata and Mollusca
- 1.2 Comparative account of skeletal system in vertebrates
 - 1.2.1 Axial Skelton
 - 1.2.1.1 Skull
 - 1.2.1.2 Vertebral Column
 - 1.2.2 Appendicular skeleton
 - 1.2.2.1 Limbs
 - 1.2.2.2 Girdles

UNIT II Food and Feeding

(13hrs)

- 2.1 Mechanism of food intake
 - 2.1.1 Fluid/liquid feeding
 - 2.1.2 Particulate solid feeding mechanism
- 2.2 Basic digestive mechanisms
 - 2.2.1 Inter-Cellular digestion
 - 2.2.2 Extra-Cellular digestion
- 2.3 Filter Feeding mechanism in:
 - 2.3.1 Polychaetes
 - 2.3.2 Crustaceans
- 2.2.3 Mollusca

UNIT III Functional aspects of basic physiological activities

(12hrs)

- 3.1 Respiration
 - 3.1.1 Branchial
 - 3.1.2 Tracheal
 - 3.1.3 Pulmonary
 - 3.1.4 Cutaneous
- 3.2 Excretion: Comparative study of excretory organs in
 - 3.2.1 Invertebrates
 - 3.2.2 Vertebrates
- 3.3 Thermoregulation in vertebrates
- 3.4 Osmoregulation in marine, freshwater and land animals

UNIT IV Co-ordination in body functioning

(12hrs)

- 4.1 Primitive nervous system
 - 4. 1.1 Nerve net in coelenterata
 - 4.1.2 Nervous system in Echinodermata
 - 4.1.3 Nervous system in Hemichordata
- 4.2 Advanced nervous system
 - 4.2.1 Metameric Nervous system in Annelids
 - 4.2.2 Nervous system in Arthropods
 - 4.2.3 Nervous system in Mollusca
- 4.2.4 Comparative central Nervous system in vertebrates (through fish to mammals) with special reference to brain.

UNIT V Development and Adaptation:

(12hrs)

- 5.1 Larval forms and their functioning in
 - 5.1.1 Crustacean
 - 5.1.2 Insecta
 - 5.1.3 Echinodermata
- 5.2 Metamerism and its significance in movement
- 5.3 Principles of flight in:
 - 5.3.1 Insects
 - 5.3.2 Birds
 - 5.3.3 Mammals

Note for paper setting

Examination Theory	Syllabus to be covered	Time allotted for Exam	% weightage (marks)
	in examination		
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested:

- 1. Frederic Martini(1986) .Prentice-Hall Publishing House.Fundamentals of Anatomy and physiology.
- 2. Karelilium, William Bemis, Wallen F. Walker and Lancer (2000). Functional anatomy of vertebrates: An Evolutionary Perspectives.
- 3. Gerald, J, tertora, Sandra, R. And Bonnie (2000) Principles of Anatomy and Physiology.
- 4. R. Mc Neill Alexender (2006) Principles of Animal Locomotion
- 5. William O. Recce (2009). Functional Anatomy and Physiology of domestic animals
- 6. Gunther Von Hagens and Angelina Whalley (2011) Body Worlds: The anatomy of animal-catalog.
- 7. J.RuthLawson(2011). Platypus Global Media, Anatomy and physiology of Animals.
- 8. Saurav Singh (2013) A Textbook of Comparative Anatomy of Vertebrates. Centrum Press-e-book.
- Gerard J. Tortora and Bryan H Derrickson (2014). Priciples of Anatomy and Physiology, 15th EditionWiley online library.
 - 10 RK Saxana, SumitraSaxena(2015). Viva Books Pvt Ltd .Compartive Anatomy of vertebrates.
- 11. Piper Treuting et.al, (2017).C omparative anatomy and histology .2ndedn Elsevier.
- 12. Kino Kenneth and V. Kardong (2018) Vertebrates: Comparative Anatomy, Function, Evolution. McGraw-Hill, Higher Education.
- 13. George Kent and Bob Carr (2019). Comparative Anatomy of Vertebrates 9th Edition.

C.No. PSZOTC-202, Functional Anatomy of Animals (2024-26)

List of Practicals

Course code: PSZOPC-207

(Based on Theory Course No. 202, 204 & 205)

- To study skull of frog, rabbit, Varanus, fowl.
- To study vertebrae of frog, rabbit, Varanus, fowl.
- To study ribs, of varanus, fowl, rabbit.
- To study pectoral girdle of frog, varanus, fowl, rabbit.
- To study pelvic girdle of frog, varanus, fowl, rabbit.
- To study fore-limbs of frog, varanus, fowl, rabbit.
- To study hind-limbs of frog, varanus, fowl, rabbit.
- To study nervous system (Coelenterates, Echinodermata, Arthropoda, Mollusca)
- To study larval forms (Crustacea, Echinodermata)
- To study Circulatory system through model.
- To study Respiratory system through model.
- To study Appendages of Prawn.
- To study Filter feeding apparatus of Cladoceran zooplankton
- To study feeding in fluid feeders (Leech).
- To study osmoregulation in Earthworm.
- To study different types of liquid feedingadaptations in insects.
- To study filter feeding adaptations in Polychaetes(Chaetopterus).

Course No. PSZOTC-203

CREDITS: 4

Time Duration: 2hrs and 30 mins.

MAXIMUM MARKS : 100
a) Minor Test I : 20
b) Minor Test II : 20
c) Major Test : 60

Course Title: Basic Endocrinology

Syllabus for the examination to be held in May, 2024, May, 2025 and May, 2026

Course Outcomes

Students would develop an understanding with respect to:

- **CO-1:** the comparative morphology and physiology of neuro-endocrine systems in invertebrates and vertebrates.
- **CO-2:** the basic information about the endocrine glands & their secretions.
- **CO-3:** the working principles of hormones and their elated deficiency

diseases.

SYLLABUS

Unit I Invertebrate Neuro Endocrinology

(12hrs)

- 1.1 Neural verses hormonal coordination
- 1.2 Morphology and Physiology of Neuroendocrine system in Crustacea
 - 1.2.1 Neurosecretary cells: X and Y Organs.
 - 1.2.2 Role of Neuroendocrine Secretions on growth, reproduction and metabolism
- 1.3 Morphology and Physiology of Neuroendocrine system in Insecta
 - 1.3.1 Neuro secretary cells, Corpora cardiac, Corpora allatum and Prothoracic gland
 - 1.3.2 Neuroendocrine control of growth reproduction and metabolism

Unit II Vertebrate Endocrinology -I

(13hrs)

- 2.1 Hypothalamo-hypophysial System
 - 2.1.1 General organization of Hypothalamus: Localization, chemistry and action of hypophysiotropic hormones.
- 2.2 Pituitary gland
 - 2.2.1 Localization, Chemistry and physiological roles of Adenohypophysial homones and Neurohypophysial hormones.
 - 2.2.2 Neural and vascular supply of hypophysis
 - 2.2.3 Pathophysiology of Pituitary hormones
- 2.3 Thyroid Gland: Morphology, anatomy and histology of the gland
 - 2.3.1. Biosynthesis of Thyroid hormones
 - 2.3.2. Physiologic roles
 - 2.3.3 Pathophysiology of Thyroid hormones
- 2.4 Parathyroid Gland: Morphology, anatomy and histology of the gland
 - 2.4.1 Role of Calcitonin, PTH and Vit. D in calcium homeostasis.

UNIT III Vertebrate Endocrinology -II

(12hrs)

- 3.1 Adrenal Gland: Comparative Morphology, anatomy, functions and chemical structure of hormones released
 - 3.1.1 Morphology and Histology of the Adrenal cortex
 - 3.1.2 Biosynthesis and role of corticosteroids
 - 3.1.3 Biosynthesis and role of Adrenal medullary hormones (Catecholamine)
 - 3.1.4 Renin angiotensin system
 - 3.1.5 Pathophysiology of adrenal hormones

C. No. PSZOTC-203, Basic Endocrinology (2024-26)

- 3.2 Pancreatic Islets: Structure, Role and Regulation of Insulin and Glucagon
 - 3.2.1 Pathophysiology of Pancreatic hormones
- 3.3 Gastro-intestinal hormones: types and functions

Unit IV Putative endocrine glands and pheromones

(13hrs)

- 4.1 Structure and function of pineal gland
 - 4.1.1 Biosynthesis of Melatonin
- 4.2 Structure and function of Thymus gland
- 4.3 Structure and function of Urophysis
- 4.4 Structure and function of Corpuscle of stannius
- 4.5 Pheromones: Types, Structure and Function

Unit V Hormonal action and assaying techniques

- 5.1 Formation, Release& transport of hormones
- 5.2 Homeostasis: Temperature, calcium, water
- 5.3 Feedback mechanism
- 5.4 Mechanism of hormone action
- 5.5 Hormone Assays Techniques
 - 5.5.1 Ablation
 - 5.5.2 Bio-assays
 - 5.5.3 Radio-immuno Assays.

Examination Theory	Syllabus to be covered	Time allotted for Exam	% weightage (marks)
	in examination		
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- 1. Chandler and Gulbert (1962) Hormones and Neurosecretions. State Univ. of New York,
- 2. Tombs, A.S. (1970)Introduction to invertebrates Endocrinology
- 3. Bantley, P.J. (1976): Comparative vertebrate Endocrinology, Cambridge Univ. Press, U.K.
- 4. Norman, Anthony, Litwack (1997): Hormones. Acad. Press
- 5. Williams Text book of Endocrinology (1998). W.B. Saunders Company.
- 6. Brook, Chales and Marshall (2000) Essential Endocrinology
- 7. Brook, Chales and Marshall (2000) Essential Endocrinology.
- 8. Barringtron, E.E.W.(2001) An introduction to comparative endocrinology, Willey Eastern Pvt. Ltd. USA.
- 9. Hadley MaE and Levine, J.E. (2006): Endocrinology by Addison-Wesley
- 10. MemledShlomo and Polonsky Kenneth (2016).13thed Text book of Endocrinology, Elsevier.
- 11. MemledShlomo, Koeing Ronald and Rosen Clifford, (2019) 14th ed. Williams Text book of Endocrinology, Elsevier.

List of Practicals

Course code: PSZOPC-206

(Based on Theory Course No. 201&203)

- To study the Endocrine glands of Frog/Rabbit/Fish/Mammals through histological slides:
- I.Pituitary gland
- II.Adrenal gland
- III. Thymus gland
- IV. Thyroid gland
- V.Parathyroid gland
- VI.Testis
- VII.Ovary
- VIII.Pancreas
- IX. Pineal gland
- X.Urophysis of Fish
- XI.Corpuscle of Stannius
 - Neroendocrine system of Prawn
- Neuroendocrine system of insects
- Ulrastructure of Neurosecretory cells

Course No. PSZOTC-204 Title: Biotechnology

CREDITS: 2 MAXIMUM MARKS : 50
Time Duration: 2hrs

a) Minor Test I : 10
b) Minor Test II : 10
c) Major Test : 30

Syllabus for the examination to be held in May, 2024, May, 2025 and May, 2026

Course Outcomes

Students would develop an understanding with respect to:

- **CO-1:** the basics and applied aspects of biotechnology and animal tissue culture.
- **CO-2:** the advanced biotechnological practices and approaches.
- **CO-3:** technology application inmedical, industrial, environmental and agricultural areas.

SYLLABUS

UNIT I Basics of Biotechnology

(10hrs)

- 1.1 Origin, history and scope of Biotechnology
- 1.2 Isolation and purification of:
 - 1.2.1 RNA,
 - 1.2.2 DNA (genomic and plasmid)
 - 1.2.3 Proteins.
- 1.3 Recombinant DNA Technology & Gene cloning
 - 1.3.1 Plasmids, bacteriophage, phagemids, cosmids, artificial chromosomes (YAC, BAC and HAC)
 - 1.3.2 Recombinant DNA Technique.
 - 1.3.3 Screening of recombinant DNA
- 1.4 Generation of genomic and cDNA libraries
- 1.5 Restriction enzymes, types, classifications and examples.

UNIT II Animal cell and tissue culture

(10hrs)

- 2.1 Laboratory facilities for Animal Tissue culture
- 2.2 Tissue culture; Slides, Flasks, Test tube culture
- 2.3 Primary culture, cell line and cloning
 - 2.3.1 Disaggregation of tissue.
 - 2.3.2 Maintenance of cultured-cell lines
 - 2.3.3 Large scale cell culture
- 2.4 Tissue and organ culture
 - 2.4.1 Organ culture
 - 2.4.2 Whole embryo culture
- 2.5 Somatic cell Hybridization
- 2.6 Tissue engineering: Artificial skin and artificial cartilage.

UNIT III Applied Biotechnology

(10hrs)

- 3.1 Analysis of Nucleic acids and proteins.
- 3.2 One and two dimensional gel electrophoresis.
- 3.3 Isoelectric focusing gels.
- 3.4 Environmental Biotechnology

- 3.4.1 Sewage treatment
- 3.4.2 Biosensors
- 3.5 Medical Biotechnology
 - 3.5.1 Molecular approaches to diagnosis
 - 3.5.2 Gene Therapy
 - 3.5.3 Transgenic Animals
- 3.6 Biophysical methods
 - 3.6.1 X-Ray crystallography
 - 3.6.2 NMR
- 3.7 Bio-Informatics

Note for Paper Setting

1 total of 1 aper betting					
Examination Theory	Syllabus to be covered	Time allotted for Exam	% weightage (marks)		
	in examination				
Minor Test I	upto 20%	1 Hr.	10		
Minor Test II	21% to 40%	1 Hr.	10		
Major Test	41% to 100%	2Hrs.	30		

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

Books Suggested

- I.J.Higgins, Best and Jones (1985). Biotechnology: Principles and Applications, Blackwell Scientific Publications
- 2. Bernard R. Glick and Jack J Pasternak,(1998). Principles and Applications of Recombinant DNA, 2nd
- 3. Joshi, V.K. and Pandey, A. Ed. (1999). Biotechnology. Food Fermentation, (2 Vol. set). Education Publ. New Delhi
- 4. Rajeshwari, S. Sethi and Sreekrishna, V.(2004). Biotechnology-2 New Age International Publ. Delhi.
- M.P. Arora. (2005). Microbiology. Himalaya Publ. House. Mumbai 14. WulfCrueger and AnnelieseCrueger. 2005. B
- Jay, J.M. (2008) Modem Food Microbiology (Sixth Edition). Aspen Publishers, Inc, Gaithersburg, Maryland.
- 7. Ananthanaryan&Paniker's. (2009.) Textbook of Microbiology. Univ. Press Pvt. Ltd. Himayatnagar, Hyderabad.
- 8. Gerard, J. Tortora, Berdell R. Funke& Christine L. Case. (2011). Microbiology: An Introduction 9th Ed, Pearson Education.
- 9. S.Ignacimuthu, s.j. (2012). Biotechnology an introduction Narasa Publishing House.
- 10. Mohan P. Arora, (2013). Biotechnology. Himalaya Publishing House
- 11. David Clarke and Nanette Pazdernik.(2015) .Biotechnology .2nd edition
- 12. Birbal Singh, Gorakh Mal, Sanjeev K. Gautam, Manishi Mukesh (2019) Advances in Animal Biotechnology Springer.
- 13. Gyun Min Lee, Helene FaustrupKildegaard, Sang Yup Lee, Jens Nielsen (2019) Cell Culture Engineering Publisher: Wiley-VCH.

C. No. PSZOTC-204,Biotechnology (2024-26)

List of Practicals

Course code: PSZOPC-207

(Based on Theory Course No. 202, 204 & 205)

- ❖ To carry out the DNA Isolation of DNA from blood sample.
- ❖ To study the various Cloning vectors –their properties and functions through diagrams.
- * To study Transgenic animals through photographs.
- ❖ To carry out Purity determination and quantitation of DNA.
- Electrophoresis of DNA linear, circular and super coiled
- Southern blotting.
- Western-blotting
- ❖ To carry out RFLP analysis.
- Northern blotting.
- Isolation of Plasmids.
- Demonstration of ELISA
- Study various bioinformatics tools online
- Immunodiagnostics (demonstration using commercial kits)
- ❖ Bioinformatics –tools on line

Course No. PSZOTC-205 Course Title: Biodiversity, Conservation & Management

CREDITS: 2 MAXIMUM MARKS : 50

Time Duration: 2hrs

a) Minor Test I : 10
b) Minor Test II : 10
c) Major Test : 30

Syllabus for the examination to be held in May, 2024; May, 2025 and May, 2026

Course Outcomes

Students would develop an understanding with respect to:

CO1: the basic concepts of biodiversity and its use for human welfare.

CO2: critical understanding of Indian biodiversity and its zoogeographical distribution.

CO3: threats to biodiversity and conversational scopeand strategies.

SYLLABUS

Unit-I Biodiversity-Concepts, definition, Scope and Constraints

(10hrs)

- 1.1 Composition and levels of Biodiversity (Genetic diversity, Species diversity, Ecosystem Diversity)
- 1.2 Patterns and scales of Biodiversity (α, β, γ)
- 1.3 Introduction to mega global biodiversity sites: an over view
- 1.4 Direct and indirect use of Biodiversity

Unit-II Indian Biodiversity: Vegetational Zones, zones of Faunal distribution

(10hrs)

- 2.1 Geographical distribution of biodiversity
- 2.2 Hot spots of biodiversity
- 2.3 Protected network areas
 - 2.3.1 National Parks
 - 2.3.2 Wildlife sanctuaries
 - 2.3.3 Wet lands
 - 2.3.4 Bioreserves
- 2.4 Vertebrate diversity of India with special reference to Endangered, Endemic and Invasive species of India

Unit-III Threats and conservation of Biodiversity

(10hrs)

- 3.1 Anthropogenic pressure on biodiversity of major land and Aquatic Systems
- 3.2 IUCN Threatened Categories
- 3.3 National wildlife Act, Red Data Book and its significance
- 3.4 Strategies for Biodiversity Conservation
 - 3.4.1 In-situ
 - 3.4.2 Ex -situ

Note for Paper Setting

Examination Theory	Syllabus to be covered	Time allotted for	% weightage (marks)
	in examination	Exam	
Minor Test I	upto 20%	1 Hr.	10
Minor Test II	21% to 40%	1 Hr.	10
Major Test	41% to 100%	2Hrs	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

C.No. PSZOTC-205, Biodiversity, Conservation & Management (2024-26)

Books Suggested:

- 1. Odum, E.P. (1971). Fundamentals of Ecology, W.B. Saunders, USA.
- 2. Kormondy, E.T. (1971). Concept of Ecology. Prentice Hall of India, New Delhi.
- 3. Scuthwick, C.H. (1976). Ecology and the quality of our environment. D. Van Nestrand
- 4. M.P. Sinha, Soma Dey, Bijaj. S. Singh. (2004). Conservation of biodiversity and Natural Resources. Dya Publ. House Delhi.
- 5. Singh, M.P. Dey, S and Singh, B.S. (2004). Conservation of Biodiversity and Natural Resources
- 6. Wilkinson, D.M. (2007). Fundamental Resources in Ecology: An Earth System Approach. Oxford Univ. Press.
- 7. Grant, W.E. and Swanmack, T.M. (2008). Ecological Modeling. Blackwell Publ. House.
- 8. S.K. Singh. (2009). Textbook of Wildlife Management. 2nd Ed. Int. Book. Distributing Co.
- 9. M.V. Reddy. (2009). Wildlife Biodiversity Conservation. Daya Publ. New Delhi.
- 10. M.G. Chitkara. (2012). Wildlife. APH Publ. Co. New Delhi.
- 11. PellensRoseli and Grand colas (2016) Biodiversity conservation and Phylogenetic Systematics. Spinger publication.
- 12. Annual Report (2019) Implementation of India's National Biodiversity Action Plan: An Overview: E-content.
- 13. Dar, Ghulam and Hassan Khuroo (2020) Biodiversity of the Himalaya: Jammu and Kashmir State Springer: e-Book

C.No. PSZOTC-205, Biodiversity, Conservation & Management (2024-26)

List of Practicals

Course code: PSZOPC-207

(Based on Theory Course No. 203,204 &205)

- To survey the National Parks in India.
- To study the Biosphere Reserves in India.
- To study the protected area network and its significance with respect to Jammu division of J&K.
- To study the protected area network and its significance with respect to Kashmir division of J&K.
- To study and calculate the diversity indices from the given biological data set.
- To study the community by quadrant method on basis of frequency and density.
- To study the Zoo-diversity of J & K in context to their IUCN status:
 - I. Reptiles
 - II. Birds
 - III. Mammals
- To study the Plankton diversity of different Aquatic ecosystems.
- Fish diversity of different lentic and lotic water bodies of Jammu region.
- Field visits will be integral part of the Practical. Visits to nearby Zoo, Museum, Sea-shore, Nursery aquaria or any other relevant site must be arranged. The report of these visits will be submitted as part of the Practical work.

SEMESTER-III

Students would develop an understanding with respect to:

- **PSO 1:** critical aspects of limnology with emphasis on bio resource management.
- **PSO 2:** basic concepts, utility and management strategies in fish and fisheries.
- **PSO 3:** principles of inheritance and advances in cytogenetics and molecular biology.
- **PSO 4:** the structure, function and metabolic pathways of various bio-molecules.
- **PSO 5:**evolutionary trends of diverse taxa along the geological time scale.
- **PSO 6:**various skill based and entrepreneurship oriented practices such as insect management ,poultry / dairy breeds, aquaculture etc for human welfare.

Course No. PSZOTE- 301

CREDITS: 4

MAXIMUM MARKS: 100

Time Duration: 2hrs and 30 mins.

a) Minor Test I: 20
b) Minor Test II: 20
c) Major Test: 60

Syllabus for the examination to be held in December, 2024, December, 2025 and December, 2026 Course Outcomes

Students would develop an understanding with respect to

	CO1:limnological aspects of inland freshwater resources. CO2: relation of inland water resources with the terrestrial ecosystem. CO3: biological diversity of lentic and lotic water bodies. CO4: conservation, management and rehabilitation aspects of wetlands.	
	SYLLABUS	
UN	IT -I	
	1.1Limnology	(12hrs)
	1.1.1 History and scope	
	1.1.2 Limnology in India	
	1.2 Water bodies (Lentic and lotic): Origin & Classification	
	1.3 Lakes 1.3.1 Origin & Classification	
	1.3.2 Eutrophication and its restoration	
	1.4 Rivers	
	1.4.1 Origin & Classification.	
	1.4.2 Abiotic & Biotic characteristics	
UN:	IT- II	(13hrs)
	2.1 Estuaries:	
	2.1.1 Origin and classification.	
	2.2 Bogs:	
	2.2.1 Origin & types 2.2.2 Abiotic and biotic characteristics	
	2.2.2 Abiotic and biotic characteristics 2.3 Marshes:	
	2.3.1 Origin and characteristics	
	2.4 Vernal pools and their significance	
UN	IT-III	(12hrs)
	3.1 Plankton: Definition & Classification	(12115)
	3.2 Phytoplankton	
	3.2.1 Composition & Distribution in aquatic ecosystem	
	3.2.2 Role of Organic nutrients in Phytoplanktonic growth	
	3.2.3 Floating adaptation	
	3.3 Zooplankton	
	3.3.1 Composition & distribution	
	3.3.2 Cyclomorphosis	
	3.3.3 Role in aquaculture	
	3.4 Benthos: Composition & Distribution	
	3.4.1 Role in Aquatic ecosystems	
	I ✓	

UNIT-IV (13hrs)

- 4.1 Physical features of Freshwater system
 - 4.1.1 Light
 - 4.1.2 Turbidity
 - 4.1.3 Currents
- 4.2 Chemical features:
 - 4.2.1 pH
 - 4.2.2 DO
 - 4.2.3 FCO₂
- 4.3 Bottom: Composition, sources and diversity
- 4.4 Thermal stratification

UNIT-V (12hrs)

- 5.1 Wetland
 - 5.1.1 Introduction & Characteristics
 - 5.1.2 Management techniques
- 5.2 Translocations
- 5.3 Acidification
- 5.4 Dwindling Freshwater Resources: Conservation & Management

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

BOOKS SUGGESTED

- 1. Cole, A.A. (1974). Text book of Limnology. The G.V. Moshy Company Saint Louis.
- 2. Hutchinson, G.E. (1975). Limnological Botany John Willey and Sons, New York
- 3. Hutchinson, G.E. (1977). A treatise on Limnology Vol. I John Willey and Sons, New York
- 4. Hutchinson, G.E. (1977). A treatise on Limnology Vol. II John Willey and Sons, New York.
- 5. Hutchinsonl, G.E. (1977). A treatise on Limnology Vol. I John Willey and Sons, New York
- 6. Olepper, H. (1979). Careers in conservation. A Ronaldn Press publication John Wiley and Sons, New York.
- 7. Hybes, H.B. N. (1979). 'The Ecology of running waters. Liver Pool University Press.
- 8. Jhingran, V.G. (1982). Fish and Fisheries of India. Hindustan Publishing corporation, India.
- 9. Goldman, C.R. and Horne, A.J.(1983).Limnology. McGraw Hill International Book Company, New Delhi .
- 10. Davies, B.R. and Walker, K.F. (1986). The Ecology of River Systems. Dr. W. Junk Publishers, Bostan
- 11. Brian Moss. Blackwell Science. (1998). Ecology of Freshwaters 3rd Ed.
- 12. Wetzel, R.G. (2001). Limnology (3rd edition). Publishers-Academic press year
- 13. G.E. Hutchinson. (2004). A Treatise on Limnology. John Willey & Sons, Canada.
- 14. Arvind Kumar. (2005). Fundamentals of Limnology
- 15. Rotipeax Author-Martens. (2005). K ed Publisher-Springer
- 16. Jorgenson, S.E., Loffler, H, rast, W and Straskraba, M. (2005). Lakes and Reservoir Management.
- 17. Welch, P.S. (2011). Limnology. N.H.P.
- 18. Agarwal. (2014). Limnology (2 copies). Publishers-Apm
- 19. Cola, Gerald. (2015). Textbook of Limnology (4th edition). CBS Publishers
- 20. Hosetti, B.B. (2016). A textbook of applied aquatic Biology. Daya publishers
- 21. Welch, P.S. (2018). Limnology. Narendra Publishers
- 22. Biju, A, (2018). Marine zooplankton Publisher-NPH
- 23. Jocelyne Hughes (2019) Freshwater Ecology and Conservation: Oxford University Press

C.No. PSZOTE- 301, Limnology (2024-26)

List of Practicals Course code: PSZOPC-307

(Based on Theory Course No. 301, 302, & 303)

- To compare the physical characteristics of water from different water bodies.
- To compare the physical characteristics of soil.
- Measurement of common pollutants like oil, grease and fluorides.
- Qualitatively analyze the water samples for phytoplankton.
- Quantitatively analyze the water samples for phytoplankton.
- Qualitatively analyze the water samples for Zooplankton.
- Quantitatively analyze the water samples for Zooplankton.
- Collection of macrobenthic fauna.
- Quantitative and qualitative analysis of benthic macroinvertebrates.
- Local fish identification based on morphometric characteristics.
- Comparative estimation of amount of FCO2 in water samples.
- Comparative estimation of amount of DO in water samples.
- Comparative estimation of Carbonate and bicarbonate.
- Comparative estimation of Ca⁺⁺ and Mg⁺¹.
- Estimation of sulphate in water sample.
- Estimation of Phosphorus in water sample.
- Estimation of Silica in water sample.
- Estimation of Nitrates in water sample.
- Sediment analysis (Na, K, Ca, Mg, Phoshorus, Nitrate)
- Study of Macrophytes.
- Field trip report/Project report.....10 marks

Semester-III

Course No. PSZOTE- 302

CREDITS: 4

Time Duration: 2hrs and 30 mins.

100 MAXIMUM MARKS : Minor Test I : 20 Minor Test II : b) 20 Major Test **60** c)

Course Title: Fish & Fisheries

Syllabus for the examination to be held in December, 2024, December, 2025 and December, 2026.

Course Outcomes

Students would develop an understanding with respect to

CO2: fish: its biotic and abiotic environment.
CO3: fish breeding: culture and captive breeding techniques.
CO4: fish nutrition: requirements, processing and preservation techniques.
CO5: fishaquarium: setting and health management.

SYLLABUS

Unit-I Introduction to Fishery science and fisheries of India

(12 hrs)

- 1.1. Importance of fishery Science.
- 1.2. Fishery Science as an integrated study.
- 1.3. Lacustrine fishery: origin and classification of lakes.
- 1.4. Riverine: resources, characteristics and production.
- 1.5. Marine: resources, characteristics and production

Unit-II Fish Environment (13hrs)

- 2.1.1 Abiotic
 - 2.1.1 Temperature: effect on vital biological processes and thermal stratification
- 2.1.2 Light: Sources, factors influencing light penetration, methods of measuring penetration and its relationship with aquatic organisms.
 - 2.1.3 pH definition, distribution and significance.
 - 2.1.4 CO₂: sources, methods of determination and significance.
 - 2.1.5 DO: sources, methods of determination and significance.
- 2.2.1. Plankton: definition, classification and its role in fishery.
- 2.2.2. Benthos: definition, classification and its role in fishery.

Unit III Nutritional requirements, Biochemical Composition and of fish processing

(12hrs)

- 3.1 Biochemical Composition of fish and their nutritional value.
- 3.2 Fish spoilage and and processing.
 - 3.2.1. Rigor mortis and factors affecting it.
 - 3.2.2. Chemical spoilage
 - 3.2.3. Microbial spoilage.
 - 3.2.4 Fish microbes.
- 3.3 Post harvest technology
 - 3.3.1 Fish sanitation and handling
- 3.4 Fish processing techniques
 - 3.4.1. Drying
 - 3.4.2. Salting
 - 3.4.3 Icing and Refrigeration

Unit IV Fish Breeding

(13hrs)

- 4.1 Natural Breeding of Indian Major carps
 - 4.1.1 Location of breeding grounds and seed collection
 - 4.1.2 Factors responsible for Natural breeding
- 4.2 Wet and Dry bund breeding techniques for breeding Indian major carps
- 4.3 Induced breeding of fish through Hypophysation
 - 4.3.1Principle techniques and advantages of Hypophysation
- 4.4 Selective breeding and hybridization

Unit-V Aquarium management/Diseases

(12hrs)

- 5.1. Aquarium fish, setting up aquaria and their maintenance and uses.
 - 5.1.1. Setting and Maintenance
 - 5.1.2. Aquarium Accessories
 - 5.1.3. Biological notes on Common aquarium fishes.
- 5.2 Fish Diseases: Symptoms, Etiology, Prophylaxis and treatment of
 - 5.2.1 Bacterial
 - 5.2.2 Viral
 - 5.2.3 Protozoan
 - 5.2.4 Helminth
- **5.3** Fishing methods
- 5.3.1 Traditional Fishing methods used in inland and marine waters
- 5.3.2 Recent advances in fishing methods
 - 5.3.2.1. Light fishing
 - 5.3.2.2. Electric Fishing
 - 5.3.2.3. Sonar/Echosounders

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs & 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- 1. John E.Bardach, Ryther and McLarney (1972). Aquaculture. The Farming and Husbandry of Fresh water and marine organisms.
- 2. C.B.L. Srivastava. (1985). A Textbook of Fisheries Science and Indian Fisheries.
- 3. Jhingran, V.G. (1997). Fish and Fisheries of India. Hindustan Publishing Corporation, India.
- 4. Sarkar, S.K. (2002). Freshwater Fish Culture. Daya Publ. House, New Delhi.
- 5. AmitaSexana. (2003). Aquarium Management. Daya Publ. House, New Delhi. Selvamani, B.R and R.K.
- 6. Mahadevan.(2008). Fish Harvesting and Processing. Campus Books International
- 7. Jagtap, H.S, S.N. Mukherjee and V.K. Garad. (2009). A Textbook of Pisciculture and Aquarium. Daya Publ. House, New Delhi.
- 8. J.S. Lucas and P.C. Southgate . (2012). Aquaculture: Farming, Aquatic Animals and Plants. 2nd Ed. Wiley Blackwell, U.K.
- 9. S.S. Khanna and H.R.Singh (2014). A Textbook of Fish Biology and Fisheries of India. Hindustan Publishing House.
- 10. Rahul P.Parihar.(2014). Fish Biology and Indian Fisheries.
- 11. HeimoMikkola (2017). Fisheries and aquaculture in the modern world.

C. No. PSZOTE- 302, Fish & Fisheries (2024-26)

List of Practicals Course code: PSZOPC-307

(Based on Theory Course No, 302)

- ❖ To study the morphometric characters of fishes.
- To identify given fish through morphometric analysis and draw diagram of the same.
- To study the external morphology and sexual dimorphism of freshwater crab.
- To identify the given specimen of prawn found in local water bodies of Jammu region.
- Qualitative analysis of zooplankton in provided water sample.
- ❖ To study various fish diseases caused by bacteria and viruses.
- To study various parts and accessories of aquaculture.
- ❖ To study different ornamental fishes-both freshwater and marine.
- To study inland and marine fish resources of India through maps. .
- ❖ To study different Fishing methods used in inland and marine waters
- **Section** Estimation of amount of FCO2 in water samples.
- Estimation of amount of DO in water samples.
- AAS based estimation of mineral constituents (Ca, Mg, Fe, etc. from exoskeleton of shell fishes).
- * Biochemical analysis of fish and shellfish tissue samples using automated bio-chemical analyser.
- ❖ Field trip report/Project report.....10 marks

Course No. PSZOTE-303

CREDITS: 4

Title: Molecular Genetics & Cytogenetics

MAXIMUM MARKS: 100

a) Minor Test I: 20
b) Minor Test II: 20
c) Major Test: 60

Syllabus for the examination to be held in December, 2024, December, 2025 and December, 2026 Course Outcomes

Students would develop an understanding with respect to

	CO1: analysis of human chromosomes by using classical and advanced cytogenetic techniques
Ш	CO2: genetics of human disorders by Pedigree analysis and karyotyping
	CO3: genetic and molecular basis of human genetic diseases.
	CO4:human genome project, human cloning, single gene and multifactorial disorders.
	SYLLABUS
т А.	nolusing Human Chromosomes (12hrs)

Unit I Analysing Human Chromosomes

(13hrs)

- 1.1 Chromosome Banding Techniques
 - 1.1.1 G-Banding
 - 1.1.2 C-Banding
 - 1.1.3 R- Banding
 - 1.1.4 High resolution Banding
 - 1.1.5 Q-Banding
 - 1.1.6 Significance and applications of chromosome banding techniques
- 1.2 Advanced Cytogenetic Techniques
 - 1.2.1 In- situ hybridization (ISH)
 - 1.2.2 Fluorescent in situ hybridization (FISH) and its types (Q FISH and F FISH)
 - 1.2.3 Comparative genomic hybridization (CGH)
 - 1.2.4 Spectral karyotyping
 - 1.2.5 Molecular correlation of band
 - 1.2.6 Multi colour karyotyping
- 1.3 Computer Assisted Chromosome Analysis
- 1.4 Light microscopy, fluorescence microscopy and confocal microscopy

Unit II Human Genome and its evolution

(12hrs)

- 2.1 Organization of human genome
 - 2.1.1 Nuclear genome
 - 2.1.2 Mitochondrial genome
- 2.2 Human gene families
- 2.3 Homolog, paralogs, orthologs and contings
- 2.4 Repetitive DNA and its types
- 2.5 Evolution of human nuclear genome

Unit III Genetic diagnosis and treatment of genetic diseases

(12hrs)

- 3.1 DNA based diagnosis
- 3.2 Biochemical diagnostics
- 3. 3 Pre-implantation diagnosis
- 3. 4 Population screening

3.5. Prenataldiagnosis:

- 3.5.1 Invasive techniques: CVS, amniocentsis, fetoscopy
- 3.5.2 Non invasive techniques: ultrasonography, fetal cells in maternal blood, maternal fetal serum
- 3.6 Treatment of genetic diseases

Unit IV Human Genome project and genetic counseling

(13hrs)

- 4.1 Human genome project
 - 4.1.1 History, organization and goals of human genome project
 - 4.1.2 Human genome project: ESLI
- 4.2 Genetic counselling
 - 4.2.1 Purpose of counselling
 - 4.2.2 Eugenics
 - 4.2.3 Euphenics
- 4.3 Gene and environmental interactions : complex diseases
- 4.4 DNA fingerprinting: principle and applications
- 4.5 Epigenetics

Unit V Stem Cell Biology, gene therapy and genetic disorders

(13hrs)

- 5.1 Stem cell research and therapeutic cloning
 - 5.1.1 Stem cell basics: types, potency
 - 5.1.2 Source and isolation of stem cells
 - 5.1.3 Use of stem cells in human welfare
- 5.2 Therapeutic Cloning
- 5.3 Ethical Issues in therapeutic cloning
- 5.4 Gene therapy
- 5.5 Genetic basis of following:
 - 5.5.1 Huntington's disease
 - 5.5.2 Cystic fibrosis
 - 5.5.3 Thalassemia
 - 5.5.4 Haemophilia
 - 5.5.5 DMD
 - 5.5.6 Fragile-X

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 hr.	20
Minor Test II	21% to 40%	1 hr.	20
Major Test	41% to 100%	2hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

BOOKS SUGGESTED

- 1) T.A.Brown, (2002). Genome, Second Edition, Bios Scientific Publishers Ltd
- 2) David P. Clark, (2005). Molecular Biology. Elsevier Academic Press.
- 3) T. A. Brown, (2006): Genome: Third Edition, Garland Science
- 4) BenjawinLewin, (2008). Gene IX. Jones and Barlett Publishers.
- 5) Ricki Lewis. (2009) Human Genetics-Concepts and Application. Second Edition. WCB-McGraw Hill.
- 6) Judith Goodship, Patrick Chinnery, and Tom Strachan (2010), Genetics and Genomics in Medicine.
- 7) F Vogel A.G. Motulusky. (2010). Human Genetics: Problems and Approaches. Third Completely Revised Edition, Springer-Verlag.
- 8) D. Peter Snustad and Michael J.Simmons. (2012). Principles of Human Genetics. Fifth edition. John Wiley & Sons, Inc
- Thomas Mueller-Reichert and Paul Verkade (2017) Methods in Cell Biology: Academic Press Books-Elsevier

C. No. PSZOTE-303, Molecular Genetics & Cytogenetics (2024-26)

List of Practicals Course code: PSZOPC-307

(Based on Theory Course No. 303)

- ❖ To study the different symbols used in pedigree analysis.
- ❖ To prepare the pedigree of your own family.
- ❖ Pedigree analysis of various inheritance patterns.
- ❖ Study of inheritance pattern of various genetic diseases through micro-photographs.
- ❖ To study the AluIndel polymorphism in humans.
- ❖ To detect the human specific Alu elements by using polymerase chain reaction.
- ❖ Study the Hardy-weinberg analysis in human population.
- ❖ To prepare the karyotype of various human genetic syndromes viz. Down's syndrome, Klinefelter syndrome, Turner syndrome etc.
- ❖ To prepare karyotype of normal male and female.
- ❖ Field trip report / project report......10 marks

Course No. PSZOTO-304 Course Title: MOOC through SWAYAM

CREDITS: 04

Course Description: One 04 credit MOOC (Massive Open Online Course) selected from SWAYAM (Study Webs of Active-Learning For Young Aspiring Minds) UGC (University Grant Commission) portal. SWAYAM is a programme initiated by Government of India to achieve the three cardinal principles of Education policy viz, access, equity and quality.

Course Objectives:

- To provide the students high quality learning experience using multimedia on anytime, anywhere basis.
- To acquaint the students with online mode of learning using ICT platform.
- To diverse the knowledge of students through open learning and help them to access different disciplines online and thus promoting interdisciplinary knowledge.
- To provide the students a hybrid model of learning that adds to the quality of classroom teaching.

Course Selection Guidelines for Students:

- The students are required to enroll and qualify any one of the MOOC course from SWAYAM (UGC) portal that should of 04 credits.
- The course can be selected from the SWAYAM platform depending upon the availability of courses as notified by UGC generally on predefined dates, 1st June or 1st November respectively, every year.
- The students are required to enroll for the SWAYAM course immediately after the commencement of 1st Semester as per notified dates by UGC for SWAYAM courses.
- The course should be completed before the completion of 3rd Semester of M.Sc.
- Student ideally should not select self-paced MOOCs, and the courses selected must be different from one offered in the course curriculum of semesters in order to duplication.
- The student must fill an undertaking form, as given in the brochure, and submit the same after duly filled form to their respective Departments/ Colleges for future reviews and record purposes.
- SWAYAM Examination fees (if any), or any other fee prescribed, shall be borne by the students only.

Course Content:

To be provided by the Course Coordinator of SWAYAM Course through online mode.

Examination:

To be conducted by the host Institution offering SWAYAM course selected by the student. The students are required to submit the qualifying mark sheet/certificate to the office of the Department of Zoology.

Course No. PSZOTC-305

CREDITS: 4

Time Duration: 2hrs and 30 mins.

Course Title: Fundamentals of Biochemistry

MAXIMUM MARKS : 100

a) Minor Test I : 20

b) Minor Test II : 20

c) Major Test : 60

Syllabus for the examination to be held in December, 2024, December 2025 and December 2026.

Course Outcomes

Students would develop an understanding with respect to:

- **CO-1:** structure, types and classification of proteins, carbohydrates and fats.
- **CO-2:** enzymes and mechanism of enzyme action .
- **CO-3:** metabolic pathways of various bio-molecules and their functional significance.

SYLLABUS

UNIT I - Proteins: Structure, Function & Metabolism 1.1 General features and classification 1.1.1 General Features 1.1.2 Classification 1.2 Levels of organization

- 1.2.1 Primary
- 1.2.2 Secondary
- 1.2.3 Teritiary
 - 1.2.3.1 Globular protein (Specialized proteins)
- 1.2.4 Quaternary.
 - 1.2.4.1 Fibrous protein (Specialized proteins)
- 1.3 Protein metabolism
 - 1.3.1 Catabolism of Amino Acid Nitrogen.
 - 1.3.2 Transamination & Deamination.
 - 1.3.3. Formation of Ammonia and its transport.
 - 1.3.4 Biosynthesis of Urea, Uric Acid & Creatinin.
- 1.4. Denaturation.

UNIT II- Enzymes : Structure & Function

(13hrs)

- 2.1 General properties and classification.
- 2.2 Coenzymes and their types, Isoenzymes
- 2.3 Kinetic properties of enzymes.
- 2.4 Mechanism of enzyme activity.
- 2.5 Inhibition of enzyme activity.
 - 2.5.1 Irreversible inhibition.
 - 2.5.2 Reversible inhibition.
 - 2.5.2.1 Competitive
 - 2.5.2.2 Non-competitive
 - 2.5.2.3 Uncompetitive
- 2.6 Feedback inhibition: Allosteric site a concept, Allosteric inhibition

UNIT III- Carbohydrates: Structure and Function

(12hrs)

- 3.1 General features and classification.
 - 3.1.1 General features

C. No. PSZOTC-305, Fundamentals of Bio-chemistry (2024-26)

- 3.1.2 Classification
- 3.2 Isomerism in Glucose
 - 3.2.1 Optical isomerism
 - 3.2.2 Ring structure.
 - 3.2.3 Anomers&Epimers.
 - 3.2.4 Aldose & Ketose Isomerism.
- 3.3 Hexosamines, Glycoproteins and Glycophorins.

UNIT IV- Lipids: Structure & Function

(12hrs)

- 4.1 Definition and classification.
- 4.2 Nomenclature and forms of fatty acids
- 4.3 Saturated & Unsaturated fatty acids
- 4.4 Simple lipids : Triacylglycerols, waxes
- 4.5 Complex Lipids : Phospholipids, Glycolipids
- 4.6 Derived Lipids: Steroids, Lipoprotien, Prostaglandins

UNIT V- Metabolism of Carbohydrates& Lipids

(13hrs)

- 5.1 Fatty acid oxidation.
- 5.2 Biosynthesis of saturated fatty acids.
- 5.3 Hormonal control of Adipose tissue.
- 5.4 Lipolysis and Ketosis.
- 5.5 Carbohydrates:
 - 5.5.1 Biological oxidation
 - 5.5.2 Oxidoreductases and their function
 - 5.5.3 Respiratory chain
 - 5.5.4 Mechanism of oxidative phosphorylation
 - 5.5.5 Transport of substances in and out of mitochondria
 - 5.5.6 Glycolysis, Glycogenesis, Glycogenolysis& Gluconeogenesis
 - 5.5.7 Oxidation of pyruvate to acetyl Co A
 - 5.5.8 Citric acid cycle

Note for Paper Setting

	Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
	Minor Test I	upto 20%	1 Hr.	20
Ī	Minor Test II	21% to 40%	1 Hr.	20
Ī	Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested:

- 1. Geoggrey L. Zubay, William w. Parson, Dennis E. Vance. (1995). Principles of Biochemistry.
- 2. R.I. Gumport, Frank, H. Deis, Nancy Counts Gerber & Rager. W.H. Freeman Co. N.Y. (2002). Biochemistry 5th Ed.
- 3. Horton Moran, Scrimgeour Perry Rawn(.2006). Principles of Biochemistry: Pearson International Fourth Edition.

C. No. PSZOTC-305, Fundamentals of Bio-chemistry (2024-26)

- 4. Donald Voet, Judith, G. Voet, Wiley Plus Charlotte, W. Pratt. (2008). Principles of Biochemistry
- 5. Murray, Bender, Botham, Kennelly Rodwell, (2009). Harper's Illustrated Biochemistry, Mc. Graw Hill Publ. House.
- Lehninger, Michael M. cox and David L. Nelson. W.H. Freeman & Co. N.Y. (2010). Principles of 6. Biochemistry
- R. Hannah Sulochana, (2010). Principles of Biochemistry. 7.
- Thomas M. Devlin. (2011). Text book of Biochemistry, 7th Edition 8.
- John, L. Tymoczko, Jeremy M, Berg & Lubert Stryer (2013). Biochemistry, 2nd Ed. 9.
- Jeremy M.Berg, John L. TymoczKo and Lubertstoryer. (2013). Biochemistry 7th Edition. 10.
- Jeremy M.Berg, John L. TymoczKo, Gatto J. Gregory and Lubertstoryer (2019) Biochemistry 8th Edition. Manjeshwar R. Prasad (2019) Textbook of Biochemistry 5th Edition. 11.
- 12.

C. No. PSZOTC-305, Fundamentals of Bio-chemistry (2024-26)

List of Practicals

Course code: PSZOPC-308

(Based on Theory Course No. 305)

- Qualitative Analysis of Carbohydrates
- Monosaccharides (glucose and fructose)
- Disaccharides
- Quantification of the amount of carbohydrates content provided in sample using Anthrone reagent.
- Analysis of protein
- Colour reactions of protein
- Precipitation of protein by alkaloid reagent.
- Quantification of the amount of proteins in the provided sample by Lowry et al method.
- Quantification of the amount of lipids in the provided sample using Folch et al. 1975 method.
- Test on fats and oils
- Estimation of the amount of moisture content in the provided sample.
- Quantification of the ash content in the provided sample.
- Test on Enzymes.
- To carry out the biochemical estimation of following from the tissue

Carbohydrates

Lipids

Proteins

- Determination of blood glucose and haemoglobin.
- To determine the presence of antibodies in a given sample by using the technique ELISA.

Course No. PSZOTC -306
CREDITS: 4
Course Title: Biosystematics, Taxonomy & Evolution
CREDITS: 4
MAXIMUM MARKS : 100
Minor Test I : 20
b) Minor Test II : 20
c) Major Test : 60

Syllabus for the examination to be held in December, 2024, December, 2025 and December, 2026

Course Outcomes

Students would develop an understanding with respect to:

CO1: the importance and application of biosystematics.

CO2: evolution with reference to various theories of organic evolution.

CO3: the major events in evolutionary time scale.
CO4: concepts, origin and mode of speciation.

* CO5: evolution of man in lieu of evidences favoring biological evolution.

SYLLABUS

Unit-I Definition and basic concepts of biosystematics

- 1.1 History, Importance and application of biosystematics
- 1.2 Species concepts
 - 1.2.1 Typological
 - 1.2.2 Nominalistic
 - 1.2.3 Biological
 - 1.2.4 Evolutionary species concept
- 1.3 Species Category
 - 1.3.1 Species
 - 1.3.2 Sub & super species
 - 1.3.3 Sibling species and identical forms

Unit-II

- 2.1 New trends in Taxonomy: Chemotaxonomy, cytotaxonomy and molecular taxonomy
- 2.2 Taxonomic collections, preservation, curating
- 2.3 Taxonomic keys: Types, their merits and demerits
- 2.4 International code of Zoological Nomenclature (ICZN)

Unit-III

- 3.1 Concepts of evolution
- 3.2 Theories of organic evolution
 - 3.2.1 Lamarckism
 - 3.2.2 Neo Lamarckism
 - 3.2.3 Darwinism and Natural selection
 - 3.2.4 Origin of species
 - 3.2.5 Theories of sexual selection
 - 3.2.6 Neo Darwinism
 - 3.2.7 Mutation theory of evolution

Unit-IV

- 4.1 Evolutionary time scale: Eras, period and epoch
- 4.2 Major events in evolutionary time scale and origin of unicellular and multi cellular organisms
- 4.3 History of life on earth
- 4.4 Speciations: Origin and mode of speciations
- 4.4.1 Allopatry and sympatry
- 4.5 Adaptive radiations
- 4.6 Isolating mechanisms

Unit-V

- 5.1 Evidences of Biological evolution
 - 5.1.1 Comparative anatomy and morphology
 - 5.1.2 Vestigial organs
 - 5.1.3 Atavism and reversion
 - 5.1.4 Paleontological: Formation and types of fossils
 - 5.1.5 Connecting and missing links: Zoo geography and its significance
- 5.2 Evolution of Man

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- Mayer, E. (1982). The growth of Biological thought. The Pulknap Press of Harvard University, Masyachusetts
- 2. E. Mayer(1983). Principles of animal systematics. Tat McGraw Pub.
- 3. Jha, A.P. (1983). Genes and Evolution. John Publication, New Delhi
- 4. Merrel, D.J. (1993). Evolution and genetics, Holt, Rinchart and Winston, Inc.
- 5. E.O. Wilson(1999). The diversity of life W.W. Northern & Co.
- 6. Strickburger, N.W. (2000). Evolution, Jones and Bartett Publishers, Boston London.
- 7. Dobzhansky, (2005). The Genetics and Origin of Species. Columbia University press
- 8. Dobzhansky, Th. F.J.Ayala, I.L. Stebbines and J.M. valentine.(2005). Evolution. Surject Publication, Delhi.
- 9. King, M. (2009). Species Evolution-The role of chromosomal Change. The Cambridge University Press, Cambridge.
- 10. PellensRoseli and Grand Colas (2016) Biodiversity conservation and phylogenetic systematics. Spinger publication.

C.No. PSZOTC-306, Biosystematics, Taxonomy & Evolution (2024-26)

List of Practicals Course code: PSZOPC-308

(Based on Theory Course No. 306)

- To study the general characters and classification of Phylum Porifera.
- To study the general characters and classification of Phylum Coelentrata.
- To study the general characters and classification of Phylum Annelida.
- To study the general characters and classification of Phylum Plathyhelminthes.
- To study the general characters and classification of Phylum Aschelminthes.
- To study the general characters and classification of Phylum Mollusca.
- To study the general characters and classification of Phylum Echinodermata.
- To study the various evidences of Evolution.
- To study the examples of Discontinuation distribution of animals.

Course No. PSZOTE-309

CREDITS: 2 Time Duration: 2Hrs

Title: Eco-friendly pest management MAXIMUM MARKS Minor Test I 10 a) **Minor Test II** 10 b) **Major Test 30** c)

Syllabus for the examination to be held in December 2024, December, 2025 and December, 2026

Course Outcomes

Students would develop an understanding with respect to:

CO1: The basic concepts of Nematology

CO2: Nematodes as biological control agents

CO3: Integrated pest management

CO4: Commercial nematode formulations

CO5: Diseases caused by nematodes

SYLLABUS

Unit-1 Introduction to Nematology

- 1.1 General characteristics of Nematodes
- Occurrence
- Habit
- Habitat
- 1.2 Classification of Nematodeupto family level
- **1.3** Nematode Morphology and reproductive structures
- Size, shape, body wall, cuticle, stylet, body regions
- Spicules, Gubernaculum, Bursa.
- 1.4 Diseases and symptoms caused by-
- Root Knot Nematode
- Soybean Cyst Nematode
- Lesion Nematode
- Trichinella spiralis
- Ascaris

Unit-II Entomopathogenic nematodes (EPNs)

- **2.1** Nematodes as biological control agents
- Symbiotic relation between Nematode and Bacteria
- 2.2 Life cycle of EPNs, First generation male female, second generation male female and Infective Juveniles (IJs)
- **2.3** EPN formulations and application strategies
- Aqueous suspension, Synthetic sponges, Gels, Clay and powder.
- **2.4** Case studies of EPNs application in
- Horticulture
- Floriculture
- Medicinal plants

Unit-III Integrated pest Management strategies

- **3.1** Introduction to Integrated pest management (IPM)
- Advantages and disadvantages of IPM

C. No. PSZOTE-309, Ecofriendly pest management (2024-26)

- **3.2** Goals and steps in implementation of IPM
- Inspection, planning preventive strategies, analysis, treatment selection, monitoring and documentation
- **3.3** Non-chemical control methods for pest management
- Spring traps, pheromone traps, sticky traps, fly and wasp traps
- **3.4** Disadvantages of chemical control of insect pests

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% Weightage (marks)
Minor Test I	upto 20%	1 Hr	10
Minor Test II	21% to 40%	1 Hr	10
Major Test	41% to 100%	2Hrs	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

Books Suggested:

- 1. Hunt, D. J., & Nguyen, K. B. (2016). Advances in entomopathogenic nematode taxonomy and phylogeny. Brill.
- 2. Grewal, P. S., Ehlers, R. U., & Shapiro-Ilan, D. I. (Eds.). (2005). Nematodes as biocontrol agents. CABI.
- **3.** Zuckerman, B. (Ed.). (2012). *Plant parasitic nematodes*. Elsevier.
- 4. Sivaramakrishnan, S., & Razia, M. (2021). Entomopathogenic Nematodes and Their Symbiotic Bacteria. Springer.
- 5. Perry, R. N., Hunt, D. J., & Subbotin, S. A. (Eds.). (2020). Techniques for Work with Plant and Soil Nematodes. CABI

List of Practicals

- General Morphology of entomopathogenic nematodes (EPNs).
- Life cycle of EPNs.
- Types of EPN formulations & their applications.
- Diseases caused by Nematodes in Plants and animals
- Beneficial nematodes and their host range
- * Reproductive structures of EPNs

Course No. PSZOTE-310 CREDITS: 2

Title: Aquarium fish keeping MAXIMUM MARKS: 50
Time Duration: 2Hrs

a) Minor Test I: 10b) Minor Test II: 10c) Major Test: 30

Syllabus for the examination to be held in December 2024, December 2025 and December 2026

Students would develop an understanding with respect to:

CO1: set home, outdoor & public aquarium

CO2: manage the home as well as public (commercial) aquariums

CO3: learn to handle different aquarium tools accessories

CO4: determine appropriate species of fishes and plant life to be introduced into an aquariumand will identify common health problems with fish in an aquarium

Unit-I Construction, setting and maintenance of aquaria

(10hrs)

- 1.1 Fabrication: frame glass, size, thickness etc.
- 1.2 Setting and selection of site
- 1.3 Stocking capacity
- 1.4 Aquarium accessories: Heaters, thermostat, aerators, water filters etc.
- 1.5 Aquarium decoratives
- 1.6 Regular maintenance schedule of aquarium

Unit-II Water quality and fish health management

(10hrs)

- 2.1 Abiotic components
 - 2.1.1 Dissolved oxygen
 - 2.1.2 pH
 - 2.1.3 Carbondioxide
 - 2.1.4 Ammonia
- 2.2 Biotic components
 - 2.2.1 Aquarium plants: Rooted, Branched, Floating
- 2.3 Aquarium fish diseases (symptoms and treatment)
 - 2.3.1 White spot
 - 2.3.2 Gill flukes
 - 2.3.3 Fin rot
 - 2.3.4 Mouth fungus

Unit-III Biology of ornamental fishes

(10hrs)

- 3.1 Biological notes on fresh water ornamental fishes.
 - 3.1.1 General characteristics
 - 3.1.2 Identification
 - 3.1.3 Feeding habits
 - 3.1.4 Breeding and spawning behavior
- 3.2 Biological notes on marine water ornamental fishes.

- 3.2.1 General characteristics
- 3.2.2 Identification
- 3.2.3 Feeding habits
- 3.2.4 Breeding and spawning behavior

Note for Paper Setting:

Examination/Theory	Syllabus to be covered in	Time allotted for	% weightage (marks)
	examination	Exam	
Minor Test I	upto 20%	1 hr	10
Minor Test II	21% to 40%	1 hr	10
Major Test	41% to 100%	2 hrs	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

BOOKS SUGGESTED:

- 1. Sanjib Saha, Concept of Aquarium Fish Keeping 2/edition
- 2. A.D. Dholakia, Ornamental Fish Culture and Aquarium Management, Daya Publishing House
- 3. Marina Costantino, Your Freshwater Aquarium. Menakabooks Publishers
- 4. Mathur Sarvesh et al, Handbook of Freshwater Ornamental Fishes, Yash Publishing House

LIST OF PRACTICALS:

- 1. Comparative estimation of amount of FCO₂ in water samples
- 2. Comparative estimation of amount of DO in water samples
- 3. Comparative estimation of amount of NH₃ in water samples
- 4. Study various fish diseases
- 5. Study different ornamental fishes-both fresh and marine water
- 6. Study different aquarium plants
- 7. Identification of common Aquarium fishes
- 8. Study of slides of parasites and diseases
- 9. Setting up of an aquarium
- 10. Aquarium accessories (Heaters, thermostat, aerators, water filters)
- 11. Biological notes on fresh water ornamental fishes
- 12. Biological notes on marine water ornamental fishes

SEMESTER - IV

Students would develop an understanding with respect to

PSO1: advances in reproductive behavior and developmental processes in vertebrates.

PSO2: crucial aspects involved in modern aquaculture practices.

PSO3: basic and applied aspects of microbiology in medicines, industries and agriculture.

PSO4: the basic and advanced concepts of animal physiology in mammals.

PSO5: biological anthropology and its use for human welfare.

Course No. PSZOTC-401 Course Title: Reproductive & Developmental Biology

CREDITS: 4 MAXIMUM MARKS : 100 Time Duration: 2hrs and 30 mins. a) Minor Test I : 20

b) Minor Test II : 20 c) Major Test : 60

Syllabus for the examination to be held in May, 2025, May, 2026 and May, 2027

Course Outcomes

Students would develop an understanding with respect to:

- **CO-1:** the gonads and their role in reproductive process.
- **CO-2:** the factors and breeding behavior in non mammalians and mammalians.
- * CO-3: the mechanism, patterns and processes involved in cleavage, blastulation and gastrulation.
- **CO-4:** the key concepts of neural tube formation, organ formation in birds and mammals, metamorphosis in amphibians.

SYLLABUS

UNIT I Structure and Function of Mammalian Gonads

- 1.1 Histomorphology of mammalian Gonads (12hrs)
- 1.2 Hormones of reproduction
 - 1.2.1 Gonadotropin: types and functions
 - 1.2.2 Sex steroids: structure, Biosynthesis & Role in Reproduction
- 1.3 Corpora lutea, their structure and function
- 1.4 Atresia: formation and significance

UNIT-II Gametogenesis and Fertilization

(13hrs)

- 2.1 Origin of primordial germ cell
- 2.2 Spermatogenesis: Process, Ultra structure of sperms, Spermiogenesis
- 2.3 Oogenesis: Process, Vitellogenesis, Types of eggs and Egg membranes
- 2.4 Fertilization process
 - 2.4.1 Capacitation
 - 2.4.2 Recognition between male and female gamete
 - 2.4.3 Acrosome reaction of sperm
 - 2.4.4 Cortical reaction of egg
 - 2.4.5 Sperm penetration into egg
 - 2.4.6 Amphimixes

UNIT-III Reproduction and Breeding in Vertebrates

(12hrs)

- 3.1 Reproduction in non mammals
 - 3.1.1 Environmental factors affecting breeding in fishes, amphibians, reptiles, birds
 - 3.1.2 Secondary sex characters & Breeding Behaviour
- 3.2 Reproductive cycles in mammals
 - 3.2.1 Estrous cycle
 - 3.2.2 Menstrual cycle

C. No. PSZOTC-401, Reproductive & Developmental Biology (2025-27)

UNIT-IV Embryonic Development

- 4.1 Cleavage and blastulation (13hrs)
 - 4.1.1 Characteristics and Mechanism of cleavage
 - 4.1.2 Patterns of cleavage
 - 4.1.3 Types of blastula, factors involved in shaping the blastula (Blastulation in sea urchin, frog, chick, mammals)
- 4.2 Gastrulation
 - 4.2.1 Presumptive fate maps in chordates
 - 4.2.2 Process of gastrulation
 - 4.2.3 Kinds of mechanism of gastrulation with special reference to birds and mammals.
- Neurulation in vertebrates 4.3
 - 4.3.1 Mechanism of neural tube formation
 - 4.3.2 Segregation of neural tube formation

UNIT-V Organogenesis

5.1. Development and Organogenesis in birds and mammals (12hrs)

- Early development of chick. 5.1.1
- 5.1.2 Development of Excretory organs.
- Development of eye. 5.1.3
- Development of ear. 5.1.4
- 5.2 Extra embryonic membrane
- 5.3 Tissue interaction and induction in organogenesis.
- 5.4 Metamorphosis in Amphibians

Note for Paper Setting

Examination Theory	Syllabus to be covered	Time allotted for Exam	% weightage (marks)
	in examination		
Minor Test I	upto 20%	1 Hr.	20
Minor Test II	21% to 40%	1 Hr.	20
Major Test	41% to 100%	2Hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- 1. Pattern B.M. Carlson, B.M. (1977). Foundation of Embryology. T.M.M. edition
- Blinsky, B.I. (1981): Introduction to Embryology, Saunders College Pub. Philadel 2.
- 3. Saunders, J. W. (1982): Dev. Biology Patterns, Principles, Problems, Macmillan Pub. Co. Inc. New York
- Berrill N.J: Developmental Biology. McGraw Hill, New Delhi. 4.
- 5. McEwen, Vertebrate Embryology.
- 6. Alferd Kuhn: Lectures on Developmental Physiology. 18.J.W. Saunders, Jr.Animal Morphogenesis.
- 7. C.R. Martin: Endocrinology. Oxford University Press
- 8.
- R.H. Williams. Text book of Endocrinology. W.B. Saunders Scott F, Gilbert: Developmental Biology (6th Ed.) NCBI Bookself 9.
- Bruce, M. Carlson (2013): Human Embryology and Developmental Biology. 10.
- Lewis Wolpert, Cheryll Tickle and Alfonso Martinez Arias 5th Ed. (2015) Principles of Development 11. Oxford University Press
- Michael J F Barresi and Scott F, Gilbert 12th Ed. (2019) Developmental Biology: Oxford University Press. 12.

C. No. PSZOTC-401, Reproductive& Developmental Biology (2025-27)

List of Practicals Course code: PSZOPC-405

(Based on Theory Course No. 401)

- Comparative Anatomy of Vertebrate Gonads and their ducts.
- I. Fish
- II. Frog
- III. Reptile
- IV. Mammal
- ❖ To prepare the chick development stages upto 120 hrs
- ❖ To study different pattern of cleavage.
- ❖ To study different types of blastula (sea urchin, chick and mammal).
- ❖ To study the different stages of Frog embryo :Morula, Blastula and Gastrula.
- ❖ To study gastrulation of in case of chick development stages.
- ❖ To study the L.S. of Frog tadpole through prepared slide.
- ❖ To study the Corpus lutetium and corpus atreticum through prepared slides.
- Detailed study of graffian follicles.

Course No. PSZOTC-402

CREDITS: 2

MAXIMUM MARKS: 50

Time Duration: 2hrs.

a) Minor Test I: 10

b) Minor Test II: 10

c) Major Test: 30

Syllabus for the examination to be held in May, 2025, May, 2026 and May, 2027 Course Outcomes

Students would develop an understanding with respect to

CO1: various forms and practices of aquaculture.

CO2: aguaculture practices with special emphasis on culture of aquatic organisms

CO3: preparation andmanagement of different types of ponds for carp culture.

CO4: types of fish feed, their composition and formulation techniques.

SYLLABUS

Unit-I Basics of Aquaculture (10hrs)

- 1.1 Definition, History, Importance and status of aquaculture
- 1.2 Kinds of Aquaculture: Pen water, Semiclosed, Closed
- 1.3 Aquaculture practices: Traditional aquaculture, Extensive, semi extensive and Intensive.
- 1.4 Criteria of selection of site for fish farm
- 1.5 Types of ponds their preparation and management
 - 1.5.1 Liming & fertilization
 - 1.5.2 Control of aqua insects, algae and weeds.
 - 1.5.3 Water quality management

Unit-II Fish feeding technology (12hrs)

- 2.1 Nutritional requirement of fish viz. protein, lipids, vitamins & minerals
- 2.2 Formulation & preparation of supplementary / artificial feed
 - 2.2.1 Feed ingredients additives
 - 2.2.2 Types of feed
 - 2.2.3 Feed preparation technology
- 2.3 Eco-biology of Indian Major carps (IMC), Seed production in laboratory
- 2.4 Feeding distribution Techniques (manual & mechanical)
- 2.5 Feed storage and factors affecting it

Unit-III Culture techniques (10hrs)

- 3.1 Biological criteria of selection of cultivable fish species .
- 3.2 Culture of Fresh water prawn and its life cycle.
- 3.3 Trout Culture
- 3.4 Cat fish culture in Cages.
- 3.5 Culture of sea weed and its importance
- 3.6 Pearl culture

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 hr.	10
Minor Test II	21% to 40%	1 hr.	10
Major Test	41% to 100%	2hrs.	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

Books Suggested:

- 1. Bardack edition, (1979), Aquaculture-The faring and Husbandry of freshwater and marine organisms John Wiley and Sons New York.
- 2. Boyd, (1982), Water quality management for land fish culture, CE Elsevier Scientific publishing company.
- 3. Pillay, T.V.R. (1993), Aquaculture principles and practices.
- 4. Robert R. Stickney, (1994), Principles of Aquaculture, John Wiley and sons Inc.
- 5. De Silva, S.S, Anderson, T.A, (1994), Springer Netherlands.
- 6. Rath R.K,(2002), Freshwater aquaculture.
- 7. Srivastava, C.B.L. (2006), Atext book of Fishery Science and Indian Fisheries.
- 8. Ayyapan, T.V.R (1993) Aquaculture principles and practices.
- 9. John S. Lucas, (2013), Aquaculture farming aquatic animals and plants, FFishing new books
- 10. Handbook of fisheries and Aquaculture 2nd edition (2013), ICAR New Delhi.
- 11. R.R. Sticking, (2017), Aquaculture introductory (3rd edition), CAB International U.K.
- 12. Jesse Trushenski (2019) Understanding Aquaculture: 5m Publishing House.

List of Practicals

Course code: PSZOPC-405 (Based on Theory Course No., 402)

To study the eco-biology of Indian major Carps-Catla, Mrigal and Rohu.
To study the eco-biology of exotic carps-Silver carp, Grass carp, Common carp.
To study the layout plan of major fin fish culture farm.
To study the structure of cages/rafts/tray culture etc.
To prepare fish meal using Pearson's square method.
To study the different types of seaweed and their culture techniques.
To study the life cycle of Prawn.
To study the life cycle of Trout.
To study the catfish culture.

COURSE NO. PSZOTC-403

Credits: 2

Time Duration: 2hrs.

Course Title: Applied Microbiology

Maximum Marks: 50
a) Minor Test I: 10
b) Minor Test II: 10
c) Major Test : 30

Syllabus for the examination to be held in May, 2025, May, 2026 and May, 2027

Course Outcomes

Students would develop an understanding with respect to

- CO1: Microorganisms and their application in health, industries and agriculture.
 CO2: Transmission mechanism and clinical presentations of common diseases.
- □ **CO3:** Agriculture / soil microbiology and bio remediation .

SYLLABUS

UNIT I Medical Microbiology

(10hrs)

- 1.1 Classification
- 1.2 Causative Agents, Etiology, Pathogenisis and Prophylaxis of Air borne diseases.
 - 1.2.1 Tuberculosis
 - 1.2.2 Pneumonia
 - 1.2.3 Diptheria
- 1.3 Food/ water/ Soil borne diseases
 - 1.3.1 Typhoid fever
 - 1.3.2 Cholera
 - 1.3.3 Tetanus
- 1.4 Viral diseases
 - 1.4.1 Hepatitis
 - 1.4.2 H1N1 infection
 - 1.4.3 Rabies
 - 1.4.4 Japanese Encephalitis
 - 1.4.5 HIV AIDS

UNIT-II Industrial Microbiology

(10hrs)

- 2.1 Microbial Fermentation
- 2.2 Products of microbial fermentation
 - 2.2.1 Milk products cheese, yogurt
 - 2.2.2 Beverages wine and beer
- 2.3 Other microbial products
 - 2.3.1 Antibiotics
 - 2.3.2 Organic acids
 - 2.3.3 Enzymes
 - 2.3.4 Probiotics
 - 2.3.5 Microbiome

UNIT-III Agricultural Microbiology

(10hrs)

- 3.1 Agricultural microbiology: Introduction
- 3.2 Soil microbiology Microbes in soil rhizosphere, phyllosphere and mycorrhiza
- 3.3 Biological nitrogen fixation: symbiotic and non symbiotic micro organisms
- 3.4 Bioremediation: the pollution solution
- 3.4.1 Bacteria as excellent players in reducing water pollution
- 3.4.2 Super bug: a tool to treat oil spills
- 3.5 Impact of microbes on the environment

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 hr.	10
Minor Test II	21% to 40%	1 hr.	10
Major Test	41% to 100%	2hrs.	30

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1 mark each and be spread over entire syllabus
- iii. Section B comprises of 4 questions from remaining 2 units and candidate has to attempt one question from each unit of 10 marks each.

Books Suggested:

- 1. Wood, J. B. (1985). *Microbiology of fermented foods*. Volumes I and II. .Elsevie Applied SciencePublishers. London, England
- 2. Mitchell R. (1992). *Environmental Microbiology*. John Wiley & Sons.
- 3. Tauro P, Kapoor KK & Yadav KS. (1996). *Introduction to Microbiology*. Wiley Eastern.
- 4. Pelczar MJ, Chan ECS & Kreig NR. (1997). Microbiology: Concepts and Application. Tata McGraw Hill.
- 5. Joshi, V.K. and Pandey, A. Ed. (1999). Biotechnology. Food Fermentation, (2 Vol. set). Education Publ.New Delhi
- 6. Levine MM, Kaper JB, Rappuoli R, Liu MA & Good MF. (2004). *New Generation Vaccines*. 3rd Ed.Informa Healthcare.
- 7. Rajeshwari, S. Sethi and Sreekrishna, V. (2004). Biotechnology-2 New Age International Publ. Delhi
- 8. M.P. Arora. (2005). *Microbiology*. Himalaya Publ. House. Mumbai
- 9. WulfCrueger and AnnelieseCrueger. (2005). *Biotechnology: A text book of Industrial Microbiology 2nd Ed.*Panima Publ. Corporation, New Delhi.
- 10. Male D, Brostoff J, Roth DB &Roitt . (2006). *Immunology*. Elsevier.
- 11. Jay, J.M. (2008) Modem Food Microbiology (Sixth Edition). Aspen Publishers, Inc, Gaithersburg, Maryland.
- 12. Gerard, J. Tortora, Berdell R. Funke& Christine L. Case. (2011). *Microbiology: An Introduction9*th *Ed*, Pearson Education.
- 13. Pedro Escoll (2017). Bacterial evasion of the host immune system. Caister Academic Press.
- 14. Luke Moore (2019) Infectious diseases, Microbiology and Virol: Cambridge University Press.

List of Practicals

Course code: PSZOPC-406 (Based on Theory Course No. 403)

- ❖ To study the various bio-safety levels to be used in laboratory.
- ❖ To study the working principle of autoclave.
- ❖ To study the working principle of laminar air flow.
- ❖ To carry out gram staining of bacteria present in given material (Curd).
- ❖ To study gram staining of bacteria from human throat.
- ❖ To isolate and study bacteria from given sample of soil using serial dilution, pour plate and spread plate method.
- ❖ To study different techniques of streaking.

Course No. PSZOTC-404

CREDITS: 4

Title: Animal Physiology

MAXIMUM MARKS: 100

Time Duration: 2Hrs and 30 Mins.

a) Minor Test I: 20

d) Minor Test II: 20

e) Major Test: 60

Syllabus for the examination to be held in May, 2025, May, 2026 and May, 2027

Course Outcomes

Students would develop an understanding with respect to:

CO-1: basic concepts of physiology viz., digestion, respiration, excretion, cardio-
vascular, excretory, nervous and muscular systems.
CO-2: gastrointestinal disorders, respiratory stresses vs environment.
CO-3: the mechanisms that work to keep the human body alive and functioning.

SYLLABUS

UNIT I Animal Nutrition

- 1.1. Modes of animal nutrition
- 1.2. Digestion and its control
 - 1.2.1. Salivary digestion
 - 1.2.2. Gastric digestion
 - 1.2.3. Intestinal digestion and digestion enzymes
- 1.3. Absorption in Gastro-intestinal tract (GIT)
 - 1.3.1. Carbohydrates
 - 1.3.2. Amino acids
 - 1.3.3. Lipids and other substances
- 1.4. Physiology of gastrointestinal disorders

UNIT II Blood

- 2.1 Composition and Functions
 - 2.1.1 Blood coagulation
 - 2.1.2 Blood groups and transfusion
 - 2.1.3 Buffer system
- 2.2 Heart and its working
- 2.3 Heart Beats (in mammals)
 - 2.3.1 Origin, rhythmicity and conduction
 - 2.3.2 Nervous regulation
 - 2.3.3 Chemical regulation
 - 2.3.4 Electro-cardiogram
 - 2.3.5 Cardiac cycle in man
 - 2.3.6 The exchange vessels

UNIT III Respiratory and Excretory Physiology

- 3.1 Nervous regulation of respiration (in mammals)
- 3.2 Physiological adaptations to different environments
 - 3.2.1 Environmental influences over respiratory process (in mammals)
 - 3.2.2 Extreme temperature & limits to life
 - 3.2.2.1 Tolerance to cold and freezing
 - 3.2.2.2 Tolerance to high temperature

- 3.3 Excretory physiology (in mammals)
 - 3.3.1 Detailed structure of nephron
 - 3.3.2 Glomerular functions
 - 3.3.3 Tubular functions
 - 3.3.4 The rennin angiotensins
 - 3.3.5 Aldosterone system

UNIT IV Neurophysiology

- 4.1 General neuroanatomy
 - 4.1.2 Brain, brain regions, brain connections
 - 4.1.2 Spinal Cord
- 4.2 Neurophysiology
 - 4.2.1 Structure and function of neuron and its organization
 - 4.2.2 Nerve impulse origin and propagation
 - 4.2.3 Ion channels, structure of synapse and
 - 4.2.4 Synaptic transmission and neurotransmitters
- 4.3 Neurological disorders
 - 4.3.1 Neurodevelopmental disorders
 - 4.3.2 Neuropsychological disorders
 - 4.3.3 Neurodegenerative diseases

UNIT V Muscle Physiology

- 5.1 Muscle: Types, their gross structure
 - 5.1.1 Hierarchy and skeletal muscle organization (vertebrates)
 - 5.1.2 Myofibrils: Ultra- structure
 - 5.1.3 Chemical composition of myofibril
- 5.2 Muscle contraction-striated muscles
 - 5.2.1 Sliding, filament theory and cross bridge activity
 - 5.2.1.1 Contraction cycle
 - 5.2.1.2 Excitation- contraction coupling
 - 5.2.1.3 Length tension relationship
 - 5.2.2 Cross-bridge attachment and muscle contraction
 - 5.2.3 Energy cycle, role of ATP and phosphogen

Note for paper setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 hr.	20
Minor Test II	21% to 40%	1 hr.	20
Major Test	41% to 100%	2hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- 1. Dennis, W. Wood .(1970). Principles of Animal Physiology. Arnold, Publ. Ltd., London.
- 2. Malcolin&Gorden. (1977). Animal Physiology: Principles and Adaptation. Macmillan Publ. Co. New York.
- 3. Nagabhushnam. (1993), Textbook of Animal Physiology. Oxford & IBH Publ. Co. Pvt. Ltd
- 4. Louw. (1993). Physiological Animal Ecology. Langman House, Burnt Mill, Harlow, England
- 5. Randall, Burggren and French. (2000). Eckert Animal Physiology Mechanisms and Adaptations.

C. No. PSZOTC-404, Animal Physiology (2025-27)

W.H.Freeman and Co. New York.

- Guyton and Hall.(2013). Textbook of Medical Physiology.
 K.Sembulingam and PremaSembulingam.(2016). Essentials of Medical Physiology, 7th edition.
 Linda S. Costanzo (2018) Physiology 7th Edition Publisher: Wolters Kluwer
 S. C Rastogi (2019) Essentials of Animal Physiology. Publisher: New Age Internationals.

List of Practicals Course code: PSZOPC-406

(Based on Theory Course No. 404)

- Enumerate the total RBC count of your own blood.
- Enumerate the total WBC count of your own blood.
- Estimation of Haematocrit value in a blood sample.
- Examination of Human blood groups.
- Determination of Rh+ and Rh- blood groups.
- To determine the bleeding and clotting time of blood.
- Find out the Hemoglobin %age of your own blood.
- Preparation of Haemin crystal.
- To demonstrate action of salivary enzyme amylase.
- To demonstrate action of pepsin on Proteins
- To demonstrate action of Trypsin on protein.
- Emulsification of fats.
- To prepare blood smear and study the polymorph by Arneth's count of polymorph.
- To study the structure of haemocytometer.
- To determine Blood pressure of men.
- To demonstrate coagulation in blood.

COURSE NO. PSZODC-407

(DISSERTATION COURSE)

Course Outcomes (COs):

The dissertation course is designed to enable the students to understanding about:

- basic and advanced biological concepts and techniques to define various research problems.
- application and usage of different tools and techniques to carry out research and learn more about statistical validation of research data.
- scientific writing skill and insights with respect to research ethics.
- first hand knowledge with respect to the principles, operation and applications of different laboratory equipments in various fields of biology.

COURSE NO. PSZOTO- 408

CREDITS: 4

Time Duration: 2hrs and 30 mins.

a) Minor Test I : 20
b) Minor Test II : 20
c) Major Test : 60

Syllabus for the examination to be held in May, 2025, May, 2026 and May, 2027

Course Outcomes

Students would develop an understanding with respect to

- **CO-1:** biological anthropology: historical background, scope and application.
- **CO-2:** history of human evolution / principles and processes of human evolution.
- **CO-3:** human biology; genetics, epidemiology and susceptibility to various diseases.

SYLLABUS

Unit-I Introduction to Anthropology

(12hrs)

- 1.1 Definition, nature and scope of anthropology
- 1.2 Branches of anthropology with special reference to biological anthropology
 - 1.2.1. Biological anthropology
 - 1.2.2. Cultural anthropology
 - 1.2.3. Lingual anthropology
 - 1.2.4. Forensic anthropology

UNIT- II Biological basis of life, heredity and evolution (13hrs)

- 2.1 Cell structure
- 2.2 Chromosome structure and number
- 2.3 DNA and RNA
- 2.4 Cell division:
 - 2.4.1 Mitosis
 - 2.4.2 Meiosis
 - 2.4.3 Evolutionary significance of meiosis
- 2.5 Autosomal and sex chromosome aberrations.

UNIT -III Evolution of man

(12hrs)

- 3.1 Major primate taxa
 - 3.1.1 Classification of living primates
- 3.2 Phylogenetic status, characteristics and distribution of the following:
 - 3.2.1 Prepliopethecus, Australopithecus, Paranthropus, Homoerectus, Homo sapiens, Java man, Peking man, Neanderthal man, Rhodesian man.
- 3.3 Relationship of man with Anthropoid ape
- 3.4 Evolutionary changes in primates with special references to skull and limbs.

UNIT- IV Human Variations

(13hrs)

- 4.1 Human races and racial classification
 - 4.1.1 Skin colour
 - 4.1.2. Hair texture
 - 4.1.3. Eye colour

- 4.2 Concept of culture: society and civilization
- 4.3 Basic concepts of population structure
 - 4.3.1 Composition: age and sex
 - 4.3.2 Natality, mortality and morbidity
 - 4.3.3 Fecundity and fertility

UNIT- V Human Health (13hrs)

- 5.1 Epidemiology and susceptibility to various diseases
- 5.2 Infectious diseases: causes, symptoms and diagnosis
 - 5.2.1. Bacterial: tuberculosis, cholera, typhoid
 - 5.2.2. Viral: AIDS, zika virus
- 5.3. Communicable diseases: Causes, symptoms, diagnosis
 - 5.3.1. Diabetes, cardiovascular
 - 5.3.2. Genetic: cancer, sickle cell anemia.
- 5.4. Late onset Diseases
 - 5.4.1 Alzheimer's disease
 - 5.4.2. Parkinson's disease

Note for Paper Setting

Examination Theory	Syllabus to be covered in examination	Time allotted for Exam	% weightage (marks)
Minor Test I	upto 20%	1 hr.	20
Minor Test II	21% to 40%	1 hr.	20
Major Test	41% to 100%	2hrs.& 30 mins.	60

- i. Major test will have two sections (A & B)
- ii. Section A is compulsory comprising of 10 questions of 1.5 marks each and be spread over entire syllabus
- iii. Section B comprises of 6 questions (2 from each unit) from the remaining 3 units and candidate has to attempt one question from each unit (15 marks each).

Books Suggested

- 1. Ember, E.R., M. Ember & P.N. Peregrine. (1963). Anthropology. Prentice Hall, India Pvt. Ltd.
- 2. Beals, R & Hoijer, (1966) An Introduction to Anthropology
- 3. Victor Nerriou (1982). Physical Anthropology and Archeology
- 4. Russell, L. Coochon and Fleagle John (1985). Primate Evolution and Human Origin.
- 5. Brace, C.L.(1989). Stages of Human Evolution
- 6. Larsen, C.S. (2010). A Companion to Biological Anthropology. 2nd Ed. Wiley Blackwell
- 7. Wood, B. (2011). Encyclopedia of Human Evolution. Wiley Blackwell
- 8. Bodmer&Cavallisforza (2012). Genetics, Evolution and Man. Freeman
- 9. Das, B.M. (2013), Outlive of Physical Anthropology
- 10. Stanford, Allen and Anton (2018). Biological Anthropology. Pearson Education.