

UNIVERSITY OF JAMMU

(NAAC ACCREDITED 'A ++' GRADE UNIVERSITY)
Baba Sahib Ambedkar Road, Jammu-180006 (J&K)

Academic Section

Email: academicsectionju14@gmail.com

NOTIFICATION (25/July/Adp./21)

It is hereby notified for the information of all concerned that the Vice-Chancellor, in anticipation of the approval of the Academic Council, is pleased to authorize the adoption of the syllabi and courses of studies for **Post Graduate Programme** in **Mathematics** under **NEP-2020** as per details given below:-

Two Year Post Graduate Programme under NEP-2020

Subject	Semester	For the examinations to be held in the year
Mathematics	Semester-I	December 2025, 2026 and 2027
	Semester-II	May 2026, 2027 and 2028
	Semester-III	December 2026, 2027 and 2028
	Semester-IV	May 2027, 2028 and 2029

One Year Post Graduate Programme under NEP-2020

Subject	Semester	For the examinations to be held in the year
Mathematics	Semester-I	December 2026, 2027 and 2028
	Semester-II	May 2027, 2028 and 2029

The Syllabi of the courses are also available on the University website:
www.jammuuniversity.ac.in

No. F. Acad/II/25/4993-5018

Dated: 30/06/2025

Copy for information and necessary action to:

1. Dean, Faculty of Mathematical Science
2. Convener, Board of Studies in **Mathematics**
3. Director, Centre for IT Enabled services and Management, University of Jammu for information and for uploading on University Website.
4. All members of the Board of Studies
5. Joint Registrar (Evaluation/P.G. Exam.)
6. Programmer, Computer Section, Examination Wing

DEAN ACADEMIC AFFAIRS

Anju Bhatia 29/7/2025
Abreca 28/7/25 85
9/7/25 20/7/25

**Syllabi and Course of Study for One Year Postgraduate
Programme in Mathematics (NEP 2020)**
University of Jammu.

The one year Postgraduate Programme in Mathematics of University of Jammu is a one year programme in the regular mode consisting of two semesters and carries 51 credits with each Course of 5 Credits (5 credits are divided into two parts: 4 credits for Theory (Th) and 1 credit for Practicals/Tutorials (P/T)) and the Research Thesis/Project/Project in Semester II shall carry 16 Credits. In Semester I, first two courses are compulsory and students can choose any three courses out of rest of the given courses whereas in Semester II, students can choose any two courses out of the given list of courses.

Details of the Structure of Semesters and Syllabi

Semester I

S. No.	Course Code	Course Title	Course Level	Course Credits (Th + P/T)
1	P1MATE101	Field Extensions and Galois Theory	500	4 + 1
2	P1MATE102	Integral Equations and Calculus of Variation	500	4 + 1
3	P1MATE103	Linear Programming and Optimization Techniques	500	4 + 1
4	P1MATE104	Fundamentals of Computer for Mathematics	500	4 + 1
5	P1MATE105	Applied Linear Algebra	500	4 + 1
6	P1MATE106	Geometric Function Theory	500	4 + 1
7	P1MATE107	Complex Dynamics	500	4 + 1
8	P1MATE108	Advanced Topology	500	4 + 1
9	P1MATE109	Advanced Measure Theory	500	4 + 1
10	P1MATE110	Differential Geometry	500	4 + 1
11	P1MATE111	Dynamical System and Controls	500	4 + 1
12	P1MATE112	Mathematical Modeling	500	4 + 1

Semester II

S. No.	Course Code	Course Title	Course Level	Course Credits (Th + P/T)
1	P1MATE201	Topological Vector Spaces	500	4 + 1
2	P1MATE202	Harmonic Mappings	500	4 + 1
3	P1MATE203	Uniform Spaces and Function Spaces	500	4 + 1
4	P1MATE204	Nevanlinna Value Distribution Theory	500	4 + 1
5	P1MATE205	Several Complex Variables	500	4 + 1
6	P1MATE206	Advanced Optimization Techniques	500	4 + 1
7	P1MATE207	Operator Theory	500	4 + 1
8	P1MATE208	Advanced Numerical Techniques	500	4 + 1
9	P1MARC209	Research Thesis/Project/Patent		16

Note: Tutorials/Practicals shall be devoted to the tutorials in each semester and the evaluation shall be done through problem solving session. Weightage of marks shall be distributed uniformly through out all the courses offered in the semester.

1600

One Year Postgraduate Programme in Mathematics (1st Semester)

S. No	Course No/Code	Course Title	No of Credits			Course Type	Marks		Nature of Course			SANYAM/NOOC	Vocational Course	Research Project/Summer Internship/Dissertat
				Credits Level	Credits Points		Theory	Practical/ Tutorial	Global	National	Regional			
1.	P1MATE101	Field Extensions and Galois Theory	4+1	6.5	32.5	Elective	Theory		Global					
2.	P1MATE102	Integral Equations and Calculus of Variation	4+1	6.5	32.5	Elective	Theory		Global					
3.	P1MATE103	Linear Programming and Optimization Techniques	4+1	6.5	32.5	Elective	Theory		Global					
4.	P1MATE104	Fundamental of Computer for Mathematics	4+1	6.5	32.5	Elective	Theory		Global			skill		
5.	P1MATE105	Applied Linear Algebra	4+1	6.5	32.5	Elective	Theory		Global					
6.	P1MATE106	Geometric Function Theory	4+1	6.5	32.5	Elective	Theory		Global					
7.	P1MATE107	Complex Dynamics	4+1	6.5	32.5	Elective	Theory		Global					
8.	P1MATE108	Advanced Topology	4+1	6.5	32.5	Elective	Theory		Global					
9.	P1MATE109	Advanced Measure Theory	4+1	6.5	32.5	Elective	Theory		Global					
10.	P1MATE110	Differential Geometry	4+1	6.5	32.5	Elective	Theory		Global					
11.	P1MATE111	Dynamical System and Controls	4+1	6.5	32.5	Elective	Theory		Global					
12.	P1MATE112	Mathematical Modelling	4+1	6.5	32.5	Elective	Theory		Global					

One Year Postgraduate Programme in Mathematics (2 nd Semester)													
S. No	Course No/Code	Course Title	No of Credits	Marks			Nature of Course			SAWAM/MODC	Vocational Course	Research Project/Summer Internship/Dissertation	
				Credits	Level	Credits Points	Course Type	Theory	Practical/ Tutorial	Global	National	Regional	Skill
1.	P1MATE201	Topological Vector Spaces	4+1	6.5	32.5	Elective	Theory			Global			
2.	P1MATE202	Harmonic Mappings	4+1	6.5	32.5	Elective	Theory			Global			
3.	P1MATE203	Uniform Spaces and Function Spaces	4+1	6.5	32.5	Elective	Theory			Global			
4.	P1MATE204	Nevanlinna Value Distribution Theory	4+1	6.5	32.5	Elective	Theory			Global			
5.	P1MATE205	Several Complex Variables	4+1	6.5	32.5	Elective	Theory			Global			
6.	P1MATE206	Advanced Optimization Techniques	4+1	6.5	32.5	Elective	Theory			Global			
7.	P1MATE207	Operator Theory	4+1	6.5	32.5	Elective	Theory			Global			
8.	P1MATE208	Advanced Numerical Techniques	4+1	6.5	32.5	Elective	Theory			Global			
9.	P1MARC209	Research Thesis/Project/Patent	16	6.5	104	Core	Theory			Global			Research/Project/Dissertation

Abd

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I
(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATC101 **Course Title:** Field Extensions and Galois Theory
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level:** 500
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims to provide a rigorous introduction to extension fields and Galois theory, equipping students with the theoretical foundations necessary to understand algebraic structures underlying field extensions. It emphasizes the study of algebraic, transcendental, and finite extensions, splitting fields, field automorphisms, and the profound connections between field theory and group theory established by Galois theory. The course also seeks to develop problem-solving and proof-writing skills through classical results like the solvability of polynomials, computation of Galois groups, and applications to geometric constructions.

Course Learning Outcomes: After successfully completing this course, students will be able to:

1. Define and work with finite fields, algebraic and transcendental extensions, simple extensions, minimal polynomials, and splitting fields.
2. Apply the tower law and demonstrate understanding of the structure and properties of field extensions.
3. Analyze and determine automorphisms of fields, fixed fields of automorphism groups, and characterize normal and Galois extensions.
4. Compute Galois groups of field extensions and polynomials, and apply the Fundamental Theorem of Galois Theory to establish correspondences between subgroups and intermediate fields.
5. Explain the solvability of polynomials by radicals, including the insolvability of the general quintic, and solve problems involving constructible numbers, classical geometric constructions, and Kronecker constructions.
6. Develop skills in abstract algebraic reasoning, proving theorems, and solving advanced algebraic problems relevant to both theoretical and applied mathematics.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Finite field, extension of a field, degree of an extension, finite, algebraic, and transcendental extensions, simple extensions by adjoining an element, minimal polynomials, the tower law, existence and uniqueness of splitting fields. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Automorphisms of a field, fixed field of a group of automorphisms, normal extensions, Galois extensions, finite fields as Galois extensions of prime fields. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Galois group of an extension (and of a polynomial), fixed fields, the Fundamental Theorem of Galois Theory, correspondence between subgroups and intermediate fields, examples-quadratic, cyclotomic, and simple radical extensions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Solvability of polynomials by radicals, insolvability of the general quintic, computation of Galois groups (symmetric and cyclic groups), constructible numbers and classical ruler-and-compass constructions, Kronecker construction, rational-root considerations. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. I. N. Herstein, Topics in Algebra, 2nd ed., Lexington Xerox College Publishing, 1975.
2. I. Stewart, Galois Theory, 2nd ed., Chapman and Hall, 1989.

Reference Books:

1. E. Artin, Galois Theory, 2nd ed., Notre Dame University Press, 1966.
2. W. Ledermann, Introduction to Group Theory, Oliver and Boyd, 1973.
3. F. Borceux and G. Janelidze, Galois Theories, Cambridge University Press, 2003.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATC102 Course Title: Integral Equations and Calculus of Variations
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level- 500**
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: To introduce the fundamental concepts and methods for solving integral equations and problems in calculus of variations, including Volterra and Fredholm equations, Green's functions, and classical variational problems. The course aims to develop students' analytical skills in applying these techniques to boundary value problems and optimization problems.

Course Learning Outcomes: After successfully completing this course, students will be able to:

1. Formulate and solve Volterra and Fredholm integral equations using resolvent kernels, Neumann series, and Laplace transform methods.
2. Apply Green's function techniques to solve boundary value problems and reduce differential equations to integral equations; further, understand and apply Hilbert-Schmidt theory for symmetric kernels.
3. Solve classical problems in calculus of variations such as shortest distance, brachistochrone, isoperimetric, and geodesics.
4. Derive and use Euler's equation and its generalizations to higher-order and multi-variable functionals.
5. Analyze conditional extremum problems under equality and integral constraints.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Linear Integral equations, Some basic identities, Initial value problems reduced to Volterra integral equations, Methods of successive substitution and successive approximation to solve Volterra integral equations of second kind, Iterated kernels and Neumann series for Volterra equations. Resolvent kernel as a series. Laplace transform method for a difference kernel. Solution of a Volterra integral equation of the first kind. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Boundary value problems reduced to Fredholm integral equations, Methods of successive approximation and successive substitution to solve Fredholm equations of second kind, Iterated kernels and Neumann series for Fredholm equations. Resolvent kernel as a sum of series. Fredholm resolvent kernel as a ratio of two series. Fredholm equations with separable kernels. Approximation of a kernel by a separable kernel. Fredholm Alternative, Non homogeneous Fredholm equations with degenerate kernels. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Green function, Use of method of variation of parameters to construct the Green function for a non-homogeneous linear second order boundary value problem, Basic four properties of the Green function, Alternate procedure for construction of the Green function by using its basic four properties. Reduction of a boundary value problem to a Fredholm integral equation with kernel as Green function, Hilbert-Schmidt theory for symmetric kernels. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Motivating problems of calculus of variations, Shortest distance, Minimum surface of resolution, Brachistochrone problem, Isoperimetric problem, Geodesic. Fundamental lemma of calculus of variations, Euler equation for one dependent function and its generalization to n dependent functions and to higher order derivatives. Conditional extremum under constraints and under integral constraints. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Ram P. Kanwal, Linear Integral Equations: Theory and Technique, Birkhäuser, 1996.
2. M.D. Raisinghania, Integral Equations and Boundary Value Problems, S. Chand Publishing.
3. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Dover Publications.

Reference Books:

1. Jerri, A.J., Introduction to Integral Equations with applications, A Wiley-Interscience Publication, 1999.
2. A.M. Wazwaz, A First Course in Integral Equations, World Scientific Publishing.
3. F.G. Tricomi, Integral Equations, Dover Publications.
4. L. Elsgolc, Calculus of Variations, Dover Publications.
5. Hilbert and Courant, Methods of Mathematical Physics, Vol. I, Wiley.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %		2 $\frac{1}{2}$ hour
Total			100

Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	Project Report
		25 %	Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

**Course Code: P1MATE103 Course Title: Linear Programming and Optimization
Techniques Credits: 05 (Theory: 04 + Practical/Tutorial: 01) Level- 500**

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims at familiarizing the students with the fundamental concepts, methodologies, and applications of Operations Research (OR). It aims to develop students' ability to formulate, analyze, and solve optimization problems using various OR models.

Course Learning Outcomes: After studying this course, the student will be able to

1. Explain the fundamentals, scope, and methodologies of Operations Research and identify appropriate OR models for decision-making.
2. Formulate and solve Linear Programming Problems using graphical and simplex methods, including special cases.
3. Analyze and apply duality concepts in linear programming and use advanced techniques like the Two-Phase and Big-M methods.
4. Solve transportation and transshipment problems, addressing issues like degeneracy and unbalanced cases.
5. Apply the Hungarian method to assignment problems, including maximization and variations like crew assignment and the travelling salesman problem.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Definition, scope, methodology, and applications of OR. Types of OR models. Concept of optimization. Linear Programming: Introduction, Formulation of a Linear Programming Problem (LPP), Requirements for an LPP, Advantages and limitations of LP. Graphical solution: Multiple, unbounded, and infeasible solutions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Principle of the simplex method: standard form, basic solution, basic feasible solution. Computational Aspect of Simplex Method: Cases of unique feasible solution, no feasible solution, multiple solutions, unbounded solution, and degeneracy. Two Phase and Big-M methods. Duality in LPP, primal-dual relationship. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Introduction to Sensitivity Analysis: Change in coefficients, Interpretation, and economic-significance, Ranges of feasibility. Transportation Problem: Methods for finding a basic feasible solution of a transportation problem, Modified distribution method for finding the optimum solution. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Unbalanced and degenerate transportation problems, transshipment problems, and maximization in a transportation problem. Assignment Problem: Solution by the Hungarian method, Unbalanced assignment problem, Maximization in an assignment problem, Crew assignment, and Travelling salesman problem. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

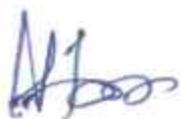
1. H. A. Taha, *Operations Research-An Introduction*. Macmillan Publishing Company Inc., 2006. (For Unit I).
2. A. Ravindran, D.T. Phillips, and J.J. Solberg, *Operations Research: Principles and Practice*, 2nd Edition, John Wiley and Sons, 1987. (For Unit II, III, and IV)

Reference Books:

1. F.S. Hiller, and G.J. Liebermann, *Introduction to Operations Research*, Tata McGraw Hill, 2000.
2. K. Swarup, P.K. Gupta, and M. Mohan, *Operations Research*, Sultan Chand & Sons, New Delhi, 2001.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report
			25 % Viva-voce
Total		100	


Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

A handwritten signature in blue ink, appearing to read "M. D. S."

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I
(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE104 Course Title: Fundamentals of Computer in Mathematics
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Course Objectives: This course aims to provide students with foundational knowledge of computers and their applications in mathematics. It introduces basic computer components, data representation, and software tools relevant to mathematical computations and documentation. The course emphasizes the importance of LaTeX for professional mathematical writing, covers essential computational tools like spreadsheets and algorithmic problem-solving, and offers a practical introduction to programming concepts using C and Python for solving mathematical problems. Through this course, students will gain computational proficiency, improve their ability to document mathematical work, and develop basic programming skills applicable to mathematical modeling and research.

Course Outcomes: After studying this course, the student will be able to

1. Explain the basic components of a computer system, data representation formats, operating system functions, and the role of mathematical software.
2. Create professional-quality mathematical documents using LaTeX, including equations, theorems, tables, figures, and bibliographic references.
3. Apply computational tools such as spreadsheets to perform basic mathematical calculations, generate visualizations, and use algorithmic thinking to solve mathematical problems with flowcharts and pseudocode.
4. Write simple programs in C and Python to perform mathematical operations such as solving equations, generating sequences, and carrying out matrix operations.
5. Demonstrate an understanding of how computational tools and programming contribute to mathematical research, modeling, and problem solving.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Introduction to Computers in Mathematics: Historical perspective and modern applications. **Basic Computer Components:** CPU, memory, input/output devices, storage. **Data Representation:** Binary, octal, hexadecimal systems. Number conversions and arithmetic relevant to computing. **Networks and Operating Systems:** Functions, file management, command-line basics (Windows/Linux). **Overview of software types:** system, application, mathematical softwares like MATLAB, Mathematica-overview only. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Importance of documentation in mathematics. Introduction to LaTeX: document structure, environments, packages. Writing mathematical formulas, equations, and expressions, Creating theorems, lemmas, proofs, and definitions, Tables, figures, citations, and references in LaTeX, Compiling academic-style mathematical documents (assignments, reports, thesis chapters). Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Need for computational tools in mathematics. Overview of spreadsheets (Excel/Google Sheets): simple calculations, formulas, visualizations. Introduction to algorithmic thinking: what is an algorithm, how computers solve mathematical problems. Flowcharts and pseudocode for mathematical processes. Examples: solving systems of equations, iteration, factorials, sequences. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Role of programming in modern mathematics and research. Overview of compilers, interpreters, and IDEs. C Programming Concepts: Data types, variables, operators, control structures (if, loops), functions. Python Programming Concepts: Syntax, variables, math operations, conditional statements, loops, lists. Solve algebraic equations, Generate mathematical sequences, Perform matrix operations and numerical tasks. Examples and exercises based on these concepts will be covered in the tutorials.

Textbook:

1. P.K. Sinha and P. Sinha, *Computer Fundamentals*, BPB publications, 2004.
2. Yashavant Kanetkar, *Let us C*, BPB Publications, 2020.
3. Leslie Lamport, *LaTeX: A Document Preparation System*, Addison-Wesley, 2nd Edition, 1994.

Reference Books:

1. Brian W. Kernighan and Dennis M. Ritchie, *The C Programming Language*, Prentice Hall, 2nd Edition, 1988.
2. Charles Dierbach, *Introduction to Computer Science Using Python: A Computational Problem-Solving Focus*, Wiley, 1st Edition, 2015.
3. William J. Turkel and Adam Crymble, *Programming Historian: Introduction to LaTeX and Markdown*, The Programming Historian (open educational resource).
4. Timothy A. Davis, *MATLAB Primer*, CRC Press, 8th Edition, 2010.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	Project Report 25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE105

Course Title: Applied Linear Algebra

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course provides students with a rigorous understanding of advanced concepts in linear algebra, combining theoretical foundations with real-world applications. MATLAB will be integrated throughout for computational practice.

Course Outcomes: After studying this course, the student shall be able to

1. Develop an advanced understanding of vector spaces, linear transformations, and matrix theory.
2. Apply eigenvalues, eigenvectors, and spectral decomposition to practical problems.
3. Implement singular value decomposition and principal component analysis for data analysis tasks.
4. Analyze linear systems using Jordan canonical forms and solve optimization problems.
5. Gain computational proficiency with MATLAB for solving complex linear algebra problems.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Vector spaces and subspaces, basis, dimension, and linear transformations. Matrix operations, LU decomposition, and properties of special matrices such as symmetric and positive definite matrices. MATLAB sessions on basic matrix operations, solving systems of equations, and visualizations. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Eigenvalues and eigenvectors, Applications of eigenvalues and eigenvectors, matrix diagonalization, spectral theorem for symmetric matrices, and Schur decomposition. Practical MATLAB exercises on eigen-decomposition, system stability analysis, and PageRank algorithm basics. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Singular value decomposition (SVD) and its applications in data science, such as Principal Component Analysis (PCA) and image compression. Least squares, pseudoinverse solutions. MATLAB projects on implementing PCA and compressing images. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Jordan canonical form, stability analysis of linear differential systems, and an introduction to convex optimization and linear programming are covered. MATLAB practice on Jordan decomposition, basic optimization, problem-solving, and system simulations. Examples and exercises based on these concepts will be covered in the tutorials.

Abu

Text Books:

1. G. Strang, *Linear Algebra and Its Applications*, Cengage Learning, 2005.

Reference Books:

1. D. C. Lay: *Linear Algebra and Its Applications*, Pearson, 2023.
2. S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra- Vectors, Matrices, and Least Squares*, Cambridge University Press, 2018.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE106

Course Title: Geometric Function Theory

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims to provide a solid foundation in geometric function theory, focusing on univalent functions and their subclasses. Topics include the analytic continuation, harmonic functions, and key results like the Area and Distortion theorems. It also covers subordination and coefficient inequalities, preparing students for advanced study in complex analysis.

Course Learning Outcomes: After studying this course, the student will be able to

1. Understand and apply the basic principles of complex analysis, including local mapping properties and analytic continuation.
2. Classify and analyze subclasses of univalent functions such as convex, starlike, and close-to-convex functions.
3. Apply concepts of subordination and coefficient inequalities to solve problems in geometric function theory.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Basic principles, Local mapping properties, Normal families, Extremal problems, The Riemann Mapping Theorem, Analytic continuation, Harmonic and Sub-harmonic functions, Green's functions, Positive Harmonic functions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Univalent Functions: Elementary Properties and results, Examples of univalent functions, Set of univalent functions, Some operations in the set of univalent functions, The Area theorem, Growth and Distortion theorems, Coefficient estimates for univalent functions. Bounded univalent functions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Subclasses of Univalent Functions: Classes of Convex, Starlike and Close-to-convex functions and their properties in the unit disk, Spirallike functions, Typically Real functions, Growth of Integral Means, Odd Univalent functions, Asymptotic Bieberbach Conjecture. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Subordination: Basic principles, Coefficient inequalities: Rogosinski's theorem, Bernstein's theorem, Sharpened form of Schwarz Lemma, Majorization, Univalent subordinate functions. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Peter Duren: *Univalent Functions*, New York: Springer, 1983.

Reference Books:

1. A. W. Goodman: *Univalent Functions- Volume I & II*, Mariner, Florida, 1983.
2. C. Pommerenke: *Univalent Functions*, Van den Hoek and Ruprecht, Gottingen, 1975.
3. I. Graham, and G. Kohr: *Geometric Function Theory in One and Higher Dimensions*, New York: Marcel Dekker, 2003.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04

questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

A handwritten signature in black ink, appearing to read "Hood".

**Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)**
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE107

Course Title: Complex Dynamics

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims at understanding the dynamical behavior of rational functions.

Course Learning Outcomes: After studying this course the student will be able to

1. understand Iteration of Möbius transformation, attracting, repelling and indifferent fixed points, critical points, Riemann-Hurwitz relation, topology of rational functions.
2. understand Properties of Julia sets: Exceptional points, backward orbit, minimality property of the Julia set, expanding property of the Julia set.
3. understand Riemann-Hurwitz formula for covering maps, maps between components of the Fatou set, the number of components of the Fatou set, components of the Julia set.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Iteration of Möbius transformation, attracting, repelling and indifferent fixed points. Iteration of maps $z \rightarrow z^2, z \rightarrow z^2 + c, z \rightarrow z + 1/z$, Newton's approximation. The Extended Complex Plane, chordal metric, spherical metric, rational maps, Lipschitz condition, conjugacy classes of rational maps, valency of a function, fixed points, critical points, Riemann-Hurwitz relation, topology of rational functions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Equicontinuous family of functions, Fatou and Julia sets of a rational map, completely invariant sets, normal families and equicontinuity. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Properties of Julia sets: Exceptional points, backward orbit, minimality property of the Julia set, expanding property of the Julia set, periodic points of a rational map, commuting rational maps and their Julia sets, rational maps with empty Fatou set. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

The structure of the Fatou set: The topology of the sphere, completely invariant components of the Fatou set, the Euler characteristic, the Riemann-Hurwitz formula for covering maps, maps between components of the Fatou set, the number of components of the Fatou set, components of the Julia set. Examples and exercises based on these concepts will be covered in the tutorials.

Text Book:

1. A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.

Reference Books:

1. L. Carlson and T. W. Gamelin, Complex Dynamics, Springer-Verlag, 1993.
2. N. Steinmetz, Rational Iteration, De Gruyter Studies in Mathematics, 1993.
3. S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge University Press, 2000.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit). Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2025, 2026, 2027)

Course Code: P1MATE108

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Course Title: Advanced Topology

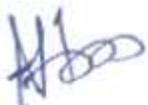
Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Course Objectives: Topology serves to lay the foundations to study the Analysis and Geometry. The objective of this course is to introduce and explore advanced topics in topology such as the countability axioms, separation axioms, Urysohn Lemma, the Urysohn Metrization Theorem, the Tietze Extension Theorem, local compactness, one-point compactification, Tychonoff's theorem, Stone-Čech compactification, metrization theorems. The course is designed to develop an understanding of topological ideas & techniques and their role in Analysis. At the end of the course, students should be able to understand and appreciate the central results of general topology, sufficient for the main applications in geometry and analysis.

Course Outcomes: After studying this course, the student will be able to

1. understand about countability and separation axioms; create examples and solve problems related to them.
2. determine how the spaces differ/relate from each other on the basis of countability and separation axioms.
3. find one point compactification of spaces like real line and n-sphere.
4. know interesting results on complete regularity and Stone Čech compactification.
5. have studied celebrated results like Urysohn lemma, Tietze extension theorem, and Baire category theorem. Also, students shall have better understanding of metrization theorems like Urysohn metrization theorem and Nagata Smirnov metrization theorem.
6. check whether the functions can be extended from a subset to the whole space continuously with some particular properties.
7. learn about Baire spaces, m-manifolds and dimension of topological spaces.


Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

The countability axioms - first countability, second countability, Lindelöf property, separability their characterizations and basic properties; Separation axioms - $T_0, T_1, T_2, T_3, T_{3\frac{1}{2}}, T_4$, their characterizations and basic properties, concept of nets and basic properties. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Urysohn's lemma, Tietze Extension Theorem, statement of Urysohn's Metrization Theorem, local compactness, one-point compactification, Tychonoff's theorem for arbitrary products, applications of the Tychonoff theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Stone-Čech compactification, Local finiteness - locally finite and countably locally finite families, metrizable space, paracompactness and basic properties, metrization theorems: the Nagata-Smirnov metrization theorem and the Smirnov metrization theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Baire spaces, the Baire category theorem, applications of the Baire category theorem, m-manifolds, topological dimension, imbedding theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. J. R. Munkres, Topology, Pearson Education India, 2013.
2. Patty C.W., Foundation in General Topology, Jones and Bartlett, 2010.

Reference Books:

1. S. Willard, General Topology, Addison Wesley, 1970.
2. J. R. Munkres, Topology of Manifolds, Westview Press, 1991.
3. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill Education, 1963.
4. G. E. Bredon, Topology and Geometry, Springer, 1993.
5. R. Brown, Topology and Groupoids, BookSurge Publishing, 2005.
6. J. Dugundji, Topology, Allyn and Bacon, 1966.
7. J. L. Kelley, General Topology, Springer Science & Business Media, 1975.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)		2 $\frac{1}{2}$ hour	60
Total			100

Practical/Research(thesis/project/dissertation)				
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)		
Mid Term appraisal	4 hours	25 %		
External Examination	4 hours	75 %	50 %	Project Report
			25 %	Viva-voce
Total		100		

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE109

Course Title: Advanced Measure Theory

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: The purpose of this paper is to study Borel measures, Riesz-Representation theorem, Differentiation of measure, Radon-Nikodym theorem and Fubini theorem. This is a second course in measure theory and the pre-requisite for this course is basic knowledge of algebra, topology, real and Complex Analysis.

Course Learning Outcomes: After studying this course the student will be able to

1. understand signed measures and complex measures, ability to use Hahn-Nikodym theorem and recognized decomposition, Jordan decomposition, Radon singularity of measures.
2. verify conditions under which a measure defined on a semi-algebra or algebra is extendable to a sigma-algebra and to get the extended measure, and to prove the uniqueness up to multiplication by a scalar of Lebesgue measure as a translation invariant Borel measure.
3. to understand the concepts of Baire sets, Baire measures, regularity of measures on Markov representation theorem related to the locally compact spaces, Riesz representation of a bounded linear functional on the space of continuous functions.

Structure of the Course: This course is divided into four units of 1.5 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

$C_c(X)$ and linear functional on this space. Riesz-representation theorem for positive linear Functional on $C_c(X)$ (only statement). Positive Borel Measures. Regularity properties of Borel measures. Lebesgue measure on \mathbb{R}^n and its properties-Lusin's theorem. L_p -spaces, Holder's inequality and Minkowski's inequality. Completeness of L_p - spaces Approximation by continuous functions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Complex measure, Total variation, Absolute continuity, Lebesgue Radon-Nikodym theorem, Consequences of Radon-Nikodym theorem, Positive and negative variations, Hahn decomposition theorem. Bounded linear functional on L_p (only statement), Riesz representation theorem for bounded linear functional on $C_0(X)$ (only statement). Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Derivatives of measure, Symmetric derivative, Maximal function, Lebesgue point, Radon Nikodym derivative in terms of symmetric derivative, Nicely shrinking sets, Lebesgue decomposition of a Complex Borel measure on \mathbb{R}^n . Examples and elementary exercises based on these topics. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Measurability on Cartesian products, product measures, Fubini theorem for product measures, Counter examples of Fubini theorem, Completion of product measures, Convolutions. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Walter Rudin, *Real and Complex analysis*, 3rd edition McGraw. Hill Book Company, 1987.
2. J. Yeh, *Lectures in Real Analysis*, World Scientific 2000.

Reference Books:

1. H. L. Royden, *Real Analysis*, The Mac-Millan Company, New York, 1963.
2. M. E. Munroe, *Measure and Integration*, 2nd edition Addison-Wesley Publishing Company.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II.

only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

A handwritten signature in blue ink, appearing to read "Abdul" or a similar name.

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE110

Course Title: Differential Geometry

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

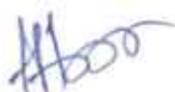
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: Being a fundamental course, this course aims at preparing students to realise and do mathematics geometrically by understanding curves, surfaces and geodesics.

Course Outcomes: This course shall enable students to

1. understand the concepts of differentiable curves, arc length, curvature graphs, level sets as solutions of smooth real valued functions vector fields and tangent space.
2. familiarize with the notions of coordinate charts, diffeomorphism, tangent plane and Euler's work on surfaces. Students shall be able to compute angle between curves and area of surfaces.
3. learn about linear self-adjoint Weingarten map and curvature of a plane curve with applications in geometry and physics.
4. know line integrals, be able to deal with differential forms and calculate arc length and curvature of surfaces.
5. deal with parametrization and be familiar with well-known surfaces as equations in multiple variables.
6. study surfaces with boundary, geodesics, minimizing properties of geodesics and be able to understand Gauss Bonnet theorem and its applications.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.


Unit-I

Curves: Differentiable curves, arc length, parametrization by arc length, plane curves, plane curvature, Directed curvature, Fundamental Theorems for plane curves.

Curves in space: Tangent, normal and binormal unit vectors, curvature and torsion. Oriented Serret frame, Fernet- Serret theorem. Fundamental Theorem for curves in \mathbb{R}^3 . Properties of curves such as Helix, Bertrand mate, involute, curves on sphere. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Surfaces: A regular surface, examples, coordinate charts, change of coordinate, differentiable functions, diffeomorphism, tangent plane, unit normal vector, oriented surfaces, first fundamental form, element of arc length, invariance of line element under coordinate change, angle between two curves, orthogonal parametrization. Area, curvature for surfaces, Euler's work on surfaces, Principle curvatures, line of curvature. Rodriguez's formula, Gauss map, second fundamental form. Meusnier's theorem, Gaussian curvature, Dupin indicatrix. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Metric Equivalence of Surfaces: Isometry, local isometry, Christoffel symbols, Theorema Egregium, Gauss equations, Mainardi- Codazzi equations, Statement of Fundamental theorem for regular surfaces, Line of curvature, asymptotic line, special, Geodesic curvature. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Geodesics: Local distance, minimizing properties of geodesics, exponential map, Hopf-Rinow Theorem. Statement of Hopf's Umlaufsatz Theorem, Gauss-Bonnet Theorem. Some applications of Gauss-Bonnet Theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. John McCleary, Geometry From a Differentiable Point of View, Cambridge University Press, 1994.

Reference Books:

1. D.T. Struik, Differential Geometry, Addison Wesley, 1961.
2. Nirmala Parkash, Differential Geometry, Tata MacGraw Hill, Publication Company, New Delhi.
3. W. Klingenberg, A Course in Differential Geometry, Springer-Verlag, New York, 1976.
4. M. Do Carmo: Differential Geometry of Curves and surfaces, Prentice Hall Englewood Cliff's, N.J. 1976.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100

Practical/Research(thesis/project/dissertation)

MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)		
Mid Term appraisal	4 hours	25 %		
External Examination	4 hours	75 %	50 %	Project Report
			25 %	Viva-voce
Total		100		

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER I
(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE111 **Course Title: Dynamical System and Control**
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level- 500**
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: The aim of this course is to introduce the students to linear and non-linear dynamical systems, control systems, observability, etc. The course may be useful for Ph.D. students also (those who have not studied it at UG/PG level).

Course Learning Outcomes: After pursuing this course, the student shall be able to:

1. Understand the fundamentals of linear and nonlinear systems.
2. Learn the autonomous and nonautonomous system.
3. Analysis of stability theory using phase portraits.
4. Understand the controllability and observability in control theory.
5. Analysis of different types of observer and optimality in control theory.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Introduction of linear and nonlinear dynamical system, Formulation of physical systems, Existence and uniqueness theorems, Linear systems, Solution of linear systems, Fundamental Matrix-I, Fundamental Matrix-II, Fundamental matrices for non-autonomous systems, Solution of non-homogeneous systems. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Stability of systems: Equilibrium points, Stability of linear autonomous systems, Stability of weakly non-linear systems, Stability of non-linear systems using linearization, Properties of phase portrait, Properties of orbits, Phase portrait: Types of critical points, Phase portrait of linear differential equations-I, Phase portrait of linear differential equations, Poincare Bendixson Theorem, Limit cycle, Lyapunov stability. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Introduction to Control Systems, Controllability of Autonomous Systems, Controllability of Non-autonomous Systems, Observability, Results on Controllability and Observability, Companion Form, Feedback Control. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

State Observer, Stabilizability, Introduction to Discrete Systems, Lyapunov Stability Theory, Optimal Control, Optimal Control for Discrete Systems, Controllability of Discrete Systems, Observability of Discrete Systems, Stability for Discrete Systems, Relation between Continuous and Discrete Systems. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Nader Jalili and Nicholas W. Candelino, *Dynamic System and Control Engineering*, Cambridge University press.

Reference Books:

1. Braun, M., *Differential Equation and Their Applications*, 4th Edition, Springer 2011.
2. Stephen Barnett, *Introduction to Mathematical Control Theory*, Oxford University Press, 1990.
3. D. Subbaram Naidu, *Optimal Control Systems*, CRC, Press, 2003.
4. M. Gopal, *Modern Control System Theory*, John Wiley & Sons Ltd., 1994.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

**Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)**
University of Jammu.

SEMESTER I

(Examination to be held in December 2026, 2027, 2028)

Course Code: P1MATE112

Course Title: Mathematical Modeling

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims to equip students with the foundational principles and practical techniques of mathematical modeling, emphasizing its necessity and broad applicability across disciplines. Students will explore various modeling approaches, including those based on ordinary and partial differential equations, as well as difference equations, to represent and analyze real-world phenomena.

Course Learning Outcomes: After studying this course, the student will be able to

1. Develop and analyze mathematical models using first- and second-order ordinary differential equations.
2. Construct and interpret systems of differential equations for modeling complex interactions in fields like medicine, environmental science, and military conflicts.
3. Apply difference equations and basic theory to model discrete-time processes in probability, finance, population dynamics, and genetics.
4. Formulate and solve mathematical models using partial differential equations.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Mathematical modeling: need, techniques, classification, and illustrative examples; Mathematical modeling through ordinary differential equations of first order; qualitative solutions through sketching. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Mathematical modeling in population dynamics, epidemic spreading, and compartment models; mathematical modeling through systems of ordinary differential equations; mathematical modeling in economics, medicine, and battle. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Mathematical modeling through ordinary differential equations of the second order. Higher order (linear) models. Mathematical modeling through difference equations: Need, basic theory; mathematical modeling in probability theory, economics, finance, population dynamics, and genetics. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Mathematical modeling through partial differential equations: simple models, mass-balance equations, variational principles, probability generating function, traffic flow problems, initial & boundary conditions. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Frank R. Giordano, Maurice D. Weir, William P. Fox: *A First Course in Mathematical Modeling*, Cengage Learning, 2002.
2. Edward A. Bender: *An Introduction to Mathematical Modeling*, Dover Publications, 2003.

Reference Books:

1. J.N. Kapur: *Mathematical Modelling*, New Age International Publishers, Second Edition, 2021.
2. Clive Dym and Elizabeth L. Jane: *Principles of Mathematical Modeling*, Elsevier, 2004.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)			
Test-I (after 30 days)	25 %	1 hour	10+10			
Test-II (after 60 days)	26 to 50%	1 hour	10+10			
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)			
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60			
Total			100			
Practical/Research(thesis/project/dissertation)						
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)				
Mid Term appraisal	4 hours	25 %				
External Examination	4 hours	75 %	50 %	Project Report		
			25 %	Viva-voce		
Total			100			

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04

questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. In major test there should not be a gap of more than two days in between two tests.

A handwritten signature in blue ink, appearing to read "Abdullah" or a similar name.

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER II

(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE201

Course Title: Topological Vector Spaces

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This is an advanced course in Analysis. An interplay of Algebra, Topology and Analysis is exhibited in this course. A course in Topology, a course in Algebra and a couple of courses in Analysis are pre-requisites for this course.

Course Learning Outcomes: After studying this course the student will be able to

1. understand balanced and absorbing sets, Minkowski functional, normable and metrizable topological vector spaces, complete topological vector spaces and Frechet space.
2. understand Dual spaces, finite dimensional topological vector spaces and Geometric form of Hahn Banach Theorem.
3. understand Duality, Polar, Bipolar theorem, Montel spaces, Schwarz spaces. Quasi completeness inverse limit and inductive limit of locally convex spaces.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-1

Definitions and examples of vector spaces, convex, balanced and absorbing sets and their properties. Minkowski functional, subspaces, product spaces and quotient spaces of Topological Vector Spaces, locally convex topological vector spaces, normable and metrizable topological vector spaces, complete topological vector spaces and Frechet spaces. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Linear transformations, linear functional and their continuity. Dual spaces, finite dimensional topological vector spaces. Linear Varieties and Hyperplanes. Geometric form of Hahn Banach Theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Uniform boundedness principle. Open mapping theorem and closed graph theorem for Frechet spaces, Banach-Adaugne theorem, extreme points and external sets Krein- Milman's theorem. Examples and exercises based on these concepts will be covered in the tutorials.

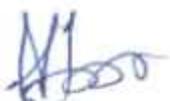
Unit-IV

Duality, Polar, Bipolar theorem Barelled and Bornological Spaces Semi Reflexive and Reflexive topological vector spaces. Montel spaces and Schwarz spaces. Quasi completeness inverse limit and inductive limit of locally convex spaces. Distributions. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. Laurent Schwarz, *Functional Analysis*, Courant Institute of Mathematical Sciences.

Reference Books:


1. R. Larsen, *Functional Analysis*, Marcel Dekker, 1972
2. F. Treves, *Topological Vector Spaces, Distributions and Kernels*, Academic Press, 1967.
3. G. Grothendieck, *Topological Vector Spaces trend*, Gordon and Breach Science Publishers, New York, 1973.
4. G. Kothe, *Topological Vector Spaces-II*, Springer Verlag New York 1976.
5. Walter Rudin, *Functional Analysis*, Tata McGraw Hill, 1973.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. In major test there should not be a gap of more than two days in between two tests.

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER II

(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE202

Course Title: Harmonic Mappings

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims to develop a foundational understanding of complex functions and harmonic mappings, with applications to fluid flow, temperature problems, and minimal surfaces. It covers vector fields, univalent harmonic functions, convolution techniques, and the geometric links between harmonic mappings and differential geometry.

Course Learning Outcomes: After studying this course, the student will be able to

1. Understand and work with harmonic univalent functions, including their decomposition and properties.
2. Apply the shearing technique and study convolution and linear combinations of harmonic mappings.
3. Derive and interpret coefficient bounds for subclasses of harmonic univalent functions.
4. Understand the basics of differential geometry and relate harmonic mappings to minimal surfaces through the Weierstrass representation.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Complex Functions and Vector Fields, Complex Potential Functions, Uniform Flows in the Plane and other Regions, Sources and Sinks, Flow in a Channel, Flows in Other Regions, Flows inside the Disk, Interval Sources and Sinks, Steady State Temperature Problems, Flows with Source and Sinks not on the Boundary, Vector Fields with Other Types of Singularities. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Anamorphosis and Möbius Maps, The Class S of Analytic, Normalized, Univalent Functions, Harmonic Univalent functions: Normalizations, Normal families. Decomposition of harmonic mappings into analytic and co-analytic parts. Class of Harmonic Univalent functions: S_H and its properties. The Shearing Technique, Harmonic Koebe function. Properties of the Dilatation and Jacobian. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Subclasses of S_H : Coefficient bounds of Convex, Starlike, and Close-to-convex univalent harmonic mappings and coefficients conjectures. Harmonic Linear Combinations and Convolution: Harmonic Linear Combinations, Univalence of linear combination, and convolution of harmonic mappings. Convolutions of harmonic right half-plane mapping and related results. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Basics of differential geometry and minimal surfaces, Isothermal parameters, Weierstrass representation of minimal surfaces, The Gauss map (G) and height differential (dh), connection of planar harmonic mappings and minimal surfaces. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. M.A. Brilleslyper, and M. J. Dorff et. al: *Explorations in complex analysis*, Mathematical Association of America, 2015.

Reference Books:

1. P. Duren: *Harmonic mappings in the plane*, Cambridge University Press, U.K., 2004.
2. I. Graham, and G. Kohr: *Geometric Function Theory in One and Higher Dimensions*, New York: Marcel Dekker, 2003.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	Project Report
		25 %	Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. No preparatory holidays shall be provided for the Test I and Test II. Those candidates who have appeared in Test I and Test II and failed to

get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER II
(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE203 **Course Title: Uniform Spaces and Function Spaces**
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level- 500**

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Course Objectives: The objective of this course is to introduce and explore advanced topics in topology such as nets (which are generalizations of sequences) and filters, uniformity and uniformizable spaces, convergence of sequences/nets of functions and corresponding topologies on the function spaces such as topology of pointwise convergence, topology of uniform convergence and topology of uniform convergence on compact, and compact subsets of some topological function spaces. The course is designed to develop an understanding of applications of general topology in function spaces. This course helps students to develop analytical abilities and prepares them for further advanced mathematical study and research.

Course Outcomes: After studying this course, the student will be able to

1. understand about the generalized concepts nets and filters.
2. understand uniformity on a set, uniform spaces and uniformizable topological spaces.
3. know about the different types of function space topologies and corresponding convergences of sequences/nets of functions.
4. know interesting results about topological properties of function spaces.
5. determine how general topology is helpful to understand the structures of function spaces.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

The concepts of nets and filters, subnets, convergences of nets/filters and basic properties, Uniform spaces - diagonal uniformity, base and subbase for uniformity, examples of uniform spaces, covering uniformity, uniformly connected, uniform continuous functions. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Induced uniformity, uniform embedding, uniform subspaces, product of uniform spaces, topology induced by uniformity and basic properties, topological group as uniform spaces, Cauchy nets, totally boundedness, completeness. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Function spaces: networks of subsets of topological spaces, set-open topologies on the space $C(X)$, particular cases - point-open and compact-open topologies, $C(X)$ as a topological group with set-open topologies, uniform topologies, supremum metric topology. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Maps on function spaces: diagonal, composition, induced, and evaluation maps, splitting topology, conjoining topology, continuous convergence, even and equi-continuity, hyper-Ascoli and hypo-Ascoli topology, dense and compact subsets of function spaces. Examples and exercises based on these concepts will be covered in the tutorials.

Reference Books:

1. I. M. James, Introduction to Uniform Spaces, Cambridge University Press, 1990.
2. I. M. James, Topological and Uniform Spaces, Springer-Verlag Berlin, 1987.
3. R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics, Springer-Verlag Berlin, 1988.
4. S. Willard, General Topology, Addison Wesley, 1970.
5. J. R. Munkres, Topology, Pearson Education India, 2013.
6. R. A. McCoy, S. Kundu, V. Jindal, Function Spaces with Uniform, Fine and Graph Topologies, Springer International Publishing AG, Cham, Switzerland, 2018.
7. J. L. Kelley, General Topology, Springer Science & Business Media, 1975.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit). Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Abos

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER II

(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE204 **Course Title: Nevalinna Value Distribution Theory**
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level- 500**
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: The objective of this course is to take the theory of functions beyond holomorphic functions and study the growth of meromorphic functions as introduced by Rolf Nevanlinna in early 1920s.

Course Learning Outcomes: After studying this course the student will be able to

1. understand Poisson-Jensen formula, Nevanlinna's first fundamental theorem, the Cartan's identity and convexity theorem, growth of meromorphic functions, order and type of meromorphic functions.
2. understand fundamental inequality, the estimation of the error term $S(r)$, conditions for $S(r)$ to be small, Nevanlinna's theory of deficient values, second fundamental theorem of Nevanlinna.
3. understand Milloux theory: Milloux's basic results, exceptional values of meromorphic functions and their derivatives.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

The Poisson-Jensen formula, characteristic function, Nevanlinna's first fundamental theorem, the Cartan's identity and convexity theorem, the Allfors-Shimizu characteristic, orders of growth, comparative growth of Nevanlinna's characteristic function $I(r)$ and the logarithm of the maximum modulus $M(r)$. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

The fundamental inequality, the estimation of the error term $S(r)$, conditions for $S(r)$ to be small, Nevanlinna's theory of deficient values and second fundamental theorem of Nevanlinna, some examples. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Deficient functions, functions taking the same values at the same points, fixed points of integral functions, a theorem of Polya: If f and g are integral functions and $\phi = f(g)$ has finite order, then either f is a polynomial or g has zero order. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Milloux theory: Milloux's basic results, exceptional values of meromorphic functions and their derivatives, Tumura-Clunie theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Text Book:

1. W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964.

Reference Books:

1. R. Nevanlinna, Analytic Functions, Springer-Verlag, 1970.
2. Yang Lo, Value Distribution Theory, Springer, 1993.
3. Jianhua Zheng, Value Distribution of Meromorphic Functions, Springer-Verlag, 2010.
4. Ilpo Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, 1993.
5. William Cherry and Z. Ye, Nevanlinna Theory of Value Distribution, Springer, 2010.
6. Lee A. Rubel, Entire and Meromorphic Functions, Springer, 1996.
7. Chi-Tai Chuang and C. C. Yang, Fix-points and Factorization of Meromorphic Functions, World Scientific Pub. Co., 1990.
8. A.S.B Holland, Introduction to the Theory of Entire Functions, Academic Press, 1973.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report
			25 % Viva-voce
Total		100	

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II

only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
University of Jammu.

SEMESTER II
(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE205

Course Title: Several Complex Variables

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: This course aims at extending Complex Analysis from one variable to several complex variables.

Course Learning Outcomes: After studying this course the student will be able to

1. understand holomorphic functions in several complex variables, Partially holomorphic functions, Cauchy-Riemann differential equations and Cauchy Integral Formula.
2. understand Power series, Taylor series, Laurent series and theoretic interpretation of the Laurent series.
3. understand Riemann Mapping Problem and Cartan's Uniqueness Theorem, Elementary properties of Analytic sets, Riemann Removable Singularity Theorem.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Geometry of \mathbb{C}^n , holomorphic functions in several complex variables: definition and basic properties, partially holomorphic functions and the Cauchy-Riemann differential equations, the Cauchy Integral Formula. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

The Space of Holomorphic Functions as a Topological Space: Locally convex spaces, the compact-open topology on the space of continuous mappings on an open set in \mathbb{C}^n , and the Theorems of Arzela-Ascoli and Montel. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Power series and Taylor series: Summable families in Banach spaces, Power series, Reinhardt domains and Laurent series. Holomorphic continuation, representation-theoretic interpretation of the Laurent series, Hartogs' Kugelsatz-special case. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Biholomorphic Maps: The Inverse Function Theorem and Implicit Functions. The Riemann Mapping Problem and Cartan's Uniqueness Theorem.

Analytic Sets: Elementary properties of analytic sets, the Riemann Removable Singularity Theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Recommended Books:

1. Volker Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhauser, 2005.

2. Paul M. Gauthier, Lectures on Several Complex Variables, Birkhauser, 2014.
3. Klaus Fritzsche and Hans Grauert, From Holomorphic Functions to Complex Manifolds, Springer, 2002.
4. Raghavan Narasimhan, Several Complex variables (Chicago Lectures in Mathematics), The University of Chicago Press, 1971.
5. Raghavan Narasimhan and Yves Nievergelt, Complex Analysis in One Variable (Second Edition), Springer Science + Business Media, New York, 2001.
6. B. A. Fuchs, Theory of Analytic Functions of Several Complex Variables, Amer. Math. Soc. 1963.
7. Lars Hormander, An Introduction to Complex Analysis in Several Variables (third Edition), Elsevier, 1988.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)				
Test-I (after 30 days)	25 %	1 hour	10+10				
Test-II (after 60 days)	26 to 50%	1 hour	10+10				
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)				
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60				
Total			100				
Practical/Research(thesis/project/dissertation)							
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)					
Mid Term appraisal	4 hours	25 %					
External Examination	4 hours	75 %	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">50 %</td><td style="width: 50%;">Project Report</td></tr> <tr> <td>25 %</td><td>Viva-voce</td></tr> </table>	50 %	Project Report	25 %	Viva-voce
50 %	Project Report						
25 %	Viva-voce						
Total		100					

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

Moon

**Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)**
University of Jammu.

SEMESTER II

(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE206

Course Title: Advanced Optimization Techniques

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: To acquaint the students with the concepts of convex and non-convex functions, their properties, various optimality results, techniques to solve nonlinear optimization problems, and their duals over convex and non-convex domains.

Course Learning Outcomes: After studying this course, the student will be able to

1. Analyze elements of queuing systems, classifying different queuing models, and solving problems.
2. Solve deterministic inventory problems, including those involving shortages and price breaks.
3. Apply PERT/CPM techniques for efficient project scheduling and critical path analysis.
4. Analyze and solve non-linear programming problems by employing techniques for unconstrained and constrained optimization.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Queuing Theory: Introduction, Queuing System, elements of queuing system, distributions of arrivals, inter arrivals, departure service times, and waiting times. Classification of queuing models, Queuing Models: $(M/M/1)$, $(\infty/FIFO)$, $(M/M/1)$, $(N/FIFO)$, Generalized Model: Birth-Death Process, $(M/M/C)$, $(\infty/FIFO)$, $(M/M/C)$, $(N/FIFO)$. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Inventory Control: The inventory decisions, costs associated with inventories, factors affecting Inventory control, Significance of Inventory control, economic order quantity (EOQ), and Deterministic inventory problems without shortage and with shortages, EOQ problems with Price breaks, and multi-item deterministic problems. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Network Analysis- Shortest Path Problem, Minimum Spanning Tree Problem, Maximum Flow Problem, Minimum Cost Flow Problem. Project scheduling by PERT/CPM: Introduction, Basic differences between PERT and CPM, Steps of PERT/CPM Techniques, PERT/CPM network Components and Precedence Relationships, Critical Path analysis, Probability in PERT analysis. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Non-Linear Programming- One and Multi Variable Unconstrained Optimization, Kuhn-Tucker Conditions for Constrained Optimization, Quadratic Programming, Separable Programming, Convex Programming, Non-Convex Programming. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. G. Hadly: *Non-Linear and Dynamic Programming*, New Delhi: Addison Wesley, Reading Mass, 1967.

Reference Books:

1. H. A. Taha, *Operations Research-An Introduction*, Macmillan Publishing Company Inc., 2006. (For Unit I).
2. A. Ravindran, D.T. Phillips, and J.J. Solberg, *Operations Research: Principles and Practice*, 2nd Edition, John Wiley and Sons, 1987. (For Unit II, III, and IV)
3. F.S. Hiller, and G.J. Liebermann, *Introduction to Operations Research*, Tata McGraw Hill, 2000.
4. K. Swarup, P.K. Gupta, and M. Mohan, *Operations Research*, Sultan Chand & Sons, New Delhi, 2001.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	50 % Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. **No preparatory holidays shall be provided for the Test I and Test II.** Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II.

only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

A handwritten signature in black ink, appearing to read "Abdullah" or a similar name.

Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.

SEMESTER II
(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE207

Course Title: Operator Theory

Credits: 05 (Theory: 04 + Practical/Tutorial: 01)

Level- 500

Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: Theory of operators on Hilbert spaces has been developed in the course using Banach Algebra Techniques. This course could be useful for persons working in integral equations, Boundary-value problems, ergodic theory and mathematical physics.

Course Learning Outcomes: After studying this course the student will be able to

1. understand Banach Algebra, Multiplicative Functionals Gelfand-Mazur theorem, spectral mapping theorem, Spectral Radius formula.
2. understand Spectrum, point spectrum and approximate points, Spectrum of Unilateral shift.
3. understand Finite rank operators, compact operators and their ideals, Approximation of compact-operators, Fredholm operators and Volterra integral operators.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Banach Algebra and examples, Multiplicative Functionals Gelfand-Mazur theorem, spectral mapping theorem, Spectral Radius formula. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

C^* - algebra, examples and elementary properties of C^* -algebra, commutative Gelfand-Naimark theorem. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Spectral theory of operators on a Hilbert space. Spectral theorem, functional calculus, square root of a positive operator, partial isometries, Polar decomposition, Spectrum, point spectrum and approximate points, Spectrum of Unilateral shift and invariant and reducing subspaces of unilateral shift and multiplication operators. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-IV

Weak, strong and uniform operator topologies on $B(H)$, Finite rank operators, compact operators and their ideals. Approximation of compact-operators, integral operators, the Calkin Algebras, Fredholm operators, Volterra integral operators, Elementary properties of composition operators on L_p -spaces. Examples and exercises based on these concepts will be covered in the tutorials.

Abon

Text Books:

1. R. G. Douglas, *Banach Algebra techniques in operator theory*, A.P. 1972 (for Unit-I, III and IV).
2. S. K. Berberian, *Lectures in Functional analysis and operator theory*, Springer-Verlag, 1973 (for Unit-II).

Reference Books:

1. J. B. Conway, *A course in functional analysis*, Springer-Verlag, 1985.
2. N. Dunford and J. Schwartz, *Linear operators*, Wiley (1958, 1963 Vol.I, II and 1971 I, Vol.III).
3. P. R. Halmos, *A Hilbert space problem Book*, Wps, 1978.
4. P. R. Halmos and V. S. Sunder, *Bounded integral operators on L_2 - spaces*, Springer-Verlag, 1978.
5. H. P. Radjavi, *Invariant subspaces*, Springer-Verlag 1973.
6. R. Schatten, *Norm ideals of completely continuous operators*, Springer-Verlag, 1960.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. No preparatory holidays shall be provided

for the Test I and Test II. Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. In major test there should not be a gap of more than two days in between two tests.

**Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)
University of Jammu.**

SEMESTER II
(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MATE208 **Course Title: Advanced Numerical Techniques**
Credits: 05 (Theory: 04 + Practical/Tutorial: 01) **Level- 500**
Maximum Marks: 125 (Theory: 100 + Practical/Tutorial: 25)

Objectives: The objectives of this course are to make students familiar with the theory of numerical analysis for solving Some numerical methods such as Taylor method, Picard method, Jacobi method, Euler method, Runge-Kutta method, Galerkin methods etc. It contains numerical differentiation and integration, numerical solutions of ordinary and partial differential equations and finite element method. It plays an important role for solving various engineering sciences problems. Therefore, it has tremendous applications in diverse fields in engineering sciences.

Course Learning Outcomes: After studying this course the student will be able to

1. understand numerical differentiation and integration .
2. find the solution of ordinary differential by using Picard method, Runge-Kutta Methods, Predictor methods, the cubic spline method, boundary value problems.
3. understand finite element method and its application to one and two dimensional problems.

Structure of the Course: This course is divided into four units of 15 class lectures each, wherein one lecture is of one hour duration. The tutorial consists of 15 tutorial sessions, each of two hours duration.

Unit-I

Numerical Differentiation and Integration

Introduction, Numerical Differentiation, Numerical Integration, Euler-Maclaurin Formula, Adaptive Quadrature Methods, Gaussian Integration, Singular Integrals, Fourier Integrals, Numerical Double Integration. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-II

Numerical Solution of Ordinary Differential Equations

Introduction, Solution by Taylor's Picard's Method, Euler's Method, Runge-Kutta Methods, Predictor-Corrector Methods, the Cubic Spline Method, Simultaneous and Higher Order Equations, Boundary Value Problems: Finite-Difference Method, The Shooting Method. Examples and exercises based on these concepts will be covered in the tutorials.

Unit-III

Numerical Solution of Partial Differential Equations

Introduction, Finite-Difference Approximations, Laplace's Equation: Jacobi's Method, Gauss-Seidel Method, SOR Method, ADI Method, Parabolic Equations, Iterative Methods, Hyperbolic Equations. Examples and exercises based on these concepts will be covered in the tutorials.

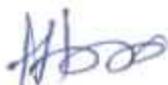
Unit-IV

The Finite Element Method Functionals-Based Function Methods of Approximation, The Rayleigh-Ritz Method, The Galerkin Method, Application to two dimensional problems, Finite element Method for one and two dimensional problems. Examples and exercises based on these concepts will be covered in the tutorials.

Text Books:

1. S.S. Sastry, *Introduction Methods of Numerical Analysis*, Prentice Hall of India 1998.

Reference Books:


1. Niyogi Pradip, *Numerical Analysis and Algorithms*, Tata McGraw-Hill, New Delhi 1998.
2. E. Balagurusamy, *Numerical Methods*, Tata McGraw-Hill 2017
3. S. C. Chapra and R. P. Canale, *Numerical Methods for Engineers*, Tata McGraw-Hill Education, 2 Penn Plaza, New York, NY 2015.

Scheme of Examination: The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as follows:

MCQ on LMS + Subjective Test	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Test-I (after 30 days)	25 %	1 hour	10+10
Test-II (after 60 days)	26 to 50%	1 hour	10+10
Theory	Syllabus to be covered in the examination	Time allotted for the examination	% Weightage (Marks)
Major test (after 90 days)	100 %	2 $\frac{1}{2}$ hour	60
Total			100
Practical/Research(thesis/project/dissertation)			
MCQ on LMS + Subjective Test	Time allotted for the examination	% Weightage (Marks)	
Mid Term appraisal	4 hours	25 %	
External Examination	4 hours	75 %	Project Report 25 % Viva-voce
Total			100

Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type question (05 marks each). Students are required to answer two questions. No preparatory holidays shall be provided

for the Test I and Test II. Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

Major Test

The major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 03 marks each. Section-B will have 04 questions of 15 marks each to be set from the last two units (02 from each unit) Students are required to attempt 01 question from each unit of section B. **In major test there should not be a gap of more than two days in between two tests.**

A handwritten signature in blue ink, appearing to read "J. M. H. 2005".

**Syllabi and Course of Study for One Year Postgraduate Programme in Mathematics
(NEP 2020)**
University of Jammu.

SEMESTER II
(Examination to be held in May 2027, 2028, 2029)

Course Code: P1MARC209

Course Title: Research Thesis/Project/Patent

Credits: 16

Maximum Marks: 400

Research Thesis/Project/Patent work is considered an unique course involving applying knowledge in solving/ analyzing/ exploring a real-life situation/ complex problem/ data analysis. Research Thesis/Project/Patent work has the intention to provide research competencies at the postgraduate level. It enables the acquisition of special/ advanced knowledge through support Research Thesis/Project/Patent work. This course is applicable to students in 2nd semester of postgraduate research program. The following mechanism shall be adopted for completion of the Research Thesis/Project/Patent .

1. Research Thesis/Project/Patent work shall be started in the beginning of the 1st semester and Supervisor/ mentors shall be allotted through DAC in the first week of the 1st semester.
2. Research Thesis/Project/Patent carries 16 credits carrying 400 marks.
3. The topics of the Research Thesis/Project/Patent shall be allotted by the nominated Supervisor/ mentor and approved by DAC.
4. The evaluation of the Research Thesis/Project/Patent and viva-voce shall be carried out by DAC of the department with following weightage of marks:
 - (i) Research Thesis/Project/Patent -280 marks.
 - (ii) Viva-voce/ Presentation-120 marks.

1100