UNIVERSITY OF JAMMU

NOTIFICATION

Syllabus for Skill Test for the post of Scientific Officer, USIC

Unit I: Fundamentals of Instrumentation

- Principles of Measurement:
 - Generalized measurement system: input, transduction, signal processing, output stages.
 - Mechanical, electrical, optical, and pneumatic measurement systems.

Transducers and Sensors:

- Classification: resistive, inductive, capacitive, piezoelectric, thermoelectric, optical, magnetic.
- Sensors for physical parameters: displacement, velocity, acceleration, force, torque, pressure, flow, temperature, level, strain, vibration, and humidity.
- Smart transducers and digital sensors.

Performance Characteristics:

- Static: accuracy, precision, sensitivity, resolution, hysteresis, drift, linearity.
- Dynamic: time constant, frequency response, bandwidth.

• Signal Conditioning & Processing:

- Amplification, filtering, modulation/demodulation, isolation, noise reduction.
- Analog-to-digital and digital-to-analog conversion, sampling theorem.
- Introduction to LabVIEW, MATLAB/Simulink in instrumentation.

Calibration & Standards:

- International system of units, calibration methods, primary vs. secondary standards.
- Traceability, uncertainty estimation, error classification.

Unit II: Mechanical Systems and Design

Strength of Materials & Design Considerations:

- Stress, strain, Hooke's law, elastic and plastic deformation.
- Failure theories, creep, fatigue, fracture mechanics in scientific instruments.
- Materials selection for precision and laboratory instruments (alloys, composites, ceramics).

• Dynamics of Machines & Vibration Analysis:

- Free and forced vibrations, damping, resonance in rotating machinery.
- Balancing of shafts, rotors, and precision components.

Heat Transfer in Instruments:

- Modes of conduction, convection, radiation.
- Design of heat exchangers, thermal insulation, cooling mechanisms for sensitive equipment.

Mechanical Components in Instrumentation:

- Bearings, gears, couplings, seals, pumps, valves, pressure vessels.
- Precision machining, tolerances, alignment, lubrication and tribology.

• Design Tools & Techniques:

- Computer-Aided Design/ Computer-Aided Manufacturing (CAD/CAM) for scientific instrument design.
- Finite Element Analysis (FEA) for stress, thermal, and vibration studies.
- Rapid prototyping and 3D printing for laboratory applications.

First III: Electronics and Control Systems

• Electronic Devices & Circuits:

- Semiconductors, diodes, transistors, operational amplifiers, instrumentation amplifiers.
- Power supplies, signal conditioning circuits.

• Digital Electronics & Embedded Systems:

- Combinational and sequential logic circuits, Analog-to-Digital Converter / Digital -to- Analog Converter (ADC/DAC) interfacing.
- Microcontrollers (Arduino, PIC, ARM Cortex), basics of Field-Programmable Gate Array (FPGA).
- Embedded C programming for instrument control.

• Control Systems:

- Modeling of dynamic systems, transfer functions.
- Time and frequency domain analysis.
- Proportional—Integral—Derivative (PID), feedforward, adaptive, and fuzzy control applications.

• Industrial Automation & Robotics:

- Programmable Logic Controller and Supervisory Control and Data Acquisition (PLCs and SCADA) systems.
- Robotic manipulators and machine vision in laboratory automation.

• Signal Transmission & Communication:

- RS-232/485, GPIB, Modbus, CAN bus, USB, Ethernet.
- Wireless protocols: Zigbee, Bluetooth, Wi-Fi, IoT communication.
- Cybersecurity basics in connected instruments.

Unit IV: Scientific Instrumentation and Maintenance

Core Scientific Instruments:

- Optical: spectrophotometers (UV-Vis, IR), XRD, microscopes (light, AFM, SEM, TEM).
- Analytical: chromatography (HPLC, GC), mass spectrometry, NMR.
- Electrical/Electronic: Digital storage oscilloscopes, function generators, spectrum analyzers.
- Mechanical: centrifuges, balances, pumps, furnaces, autoclaves.

• Biological and Biochemical Instrumentation:

- PCR (Polymerase Chain Reaction) machines principle, operation, applications.
- ELISA readers and washers working principle, troubleshooting.
- Refrigerators, deep freezers, cold rooms design, maintenance, calibration.
- Incubators, laminar flow hoods, biosafety cabinets.

Support & Utility Systems:

- Vacuum systems (rotary, diffusion, turbomolecular pumps).
- Cryogenics (LN□, He systems).
- High temperature and pressure systems.

Maintenance & Reliability Engineering:

- Preventive, predictive, and corrective maintenance.
- Condition monitoring techniques: vibration analysis, thermography, oil analysis.
- Root cause and fault-tree analysis for instrument failures.

• Laboratory Safety & Compliance:

- Electrical, chemical, and biological safety practices.
- ISO/IEC laboratory standards and GLP (Good Laboratory Practices).

Risk assessment, fire safety, emergency protocols.

Unit V: Emerging Technologies and Applications

- Smart Sensors and IoT in Instrumentation:
 - Wireless sensor networks, IoT-enabled lab monitoring systems.
 - Cyber-physical systems and cloud-based instrumentation.
- Advanced Instrumentation:
 - Micro-Electro-Mechanical Systems / Nano-Electro-Mechanical Systems (MEMS/NEMS), nano-instrumentation.
 - Lab-on-chip, microfluidies.
 - Biomedical instrumentation: ECG, EEG, CT, MRI, ultrasound basics.
- Artificial Intelligence and Data Analytics:
 - AI/ML in fault diagnosis, predictive maintenance.
 - Big data in experimental sciences.
 - Digital twins for monitoring laboratory instruments.
- Energy and Sustainability Applications:
 - Instrumentation for solar, wind, biomass energy systems.
 - Smart grids and energy efficiency instrumentation.

Case Studies in Research Instrumentation:

- Space, nuclear, defense, and material sciences.
- Role of scientific officers in multidisciplinary university research labs.

No. Estab./C&R/NTW/25/1202
Dated: 06-10-2025

Page 3 of 3