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Introduction

1.1 Introduction and Background

O
ne of the primary purposes of statistical research is to determine the true

value of population parameters. Sampling is frequently used in our everyday

activities. For example, suppose in a store we evaluate the quality of rice, sugar,

wheat, maize or any other product by taking a quantity from the bag and deciding to

buy it or not. Sampling is the process, technique, or act of selecting a suitable sample

or a representative section of a population in order to determine the parameters or

characteristics of the entire population. Because of their low cost, speed, precision,

and validity, sample surveys are utilized in business and industry, agriculture, sci-

entific, social, and economic fields, among others. Regrettably, if the population is

large, collecting data from every member of the population would be prohibitively

expensive or time-consuming. Rather than conducting a census, we can collect data

from a sample and use the sample statistics to draw conclusions about the target

population. It can usually be reduced by increasing the sample size. Non-sampling

errors can be caused by a variety of issues, including respondent errors, measurement

errors, non-response, and so on. As a result, the conclusions will be acceptable only if

the sample actually represents the population and the sample responses are truthful.

1



Chapter 1

Otherwise, the sample is skewed, and the study’s findings are untrustworthy.

Sometimes, we also have several types of survey methods that are widely employed,

such as email surveys, phone surveys and personal interview surveys. Email and

phone surveys are less expensive, however they have a significant non-response rate.

The issue of non-response may result in some participation bias. People who are

passionate about a problem, for example, are more likely to participate and their

viewpoint may not be representative of the entire population. People are less likely to

refuse a personal interview survey than the other two approaches, although it is more

expensive. A personal face-to-face interview may also generate social desirability

response bias if the survey question is sensitive. For illustration, if a survey question

asks,“What is your salary”, “Have you ever taken illicit drugs?”,“How frequently

do you gossip about others close to you?” or“Have you ever lied about your income

on your tax returns?” most individuals will try to present themselves in a socially

desirable light, therefore their answers may be slanted toward what they believe is

socially desirable.

In addition to participation bias and social desirability response bias, there are some

other non-sampling errors that will affect parameter estimation, such as measurement

errors caused by definition differences or misconceptions. As a result, dealing with

these issues is critical when we estimate the population parameters of a sensitive

variable.

1.2 Objectives

This study will be conducted to determine forced scrambled optional randomized

response model for concurrent estimation of mean of sensitive variable. Specifically,

this study aims to the following

1. To develop an estimator for the estimation of sensitive variable using forced

quantitative optional randomized response (FQORR) models.

2. To develop an estimator for the estimation of sensitive variable using forcibly

re-scrambled optional randomized response (FRORR) model.

2
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3. To compare the developed estimators in 1 and 2 with existing or competing

estimators using ORRT models.

4. To check the efficiency of the proposed estimators in realistic environment,

simulation study will be carried out to support theoretic findings.

1.3 Review of Literature

An innovative approach to the problem of estimating the proportion of a sensitive

characteristic, like induced abortion, drugs consumption, gambling, etc., by making

use of a randomization device, which was first developed by Warner [38], dealt only

with qualitative variable. The method developed by Warner [38] is inventive because

it makes use of a simple randomization device, such as a deck of cards, spinner etc.,

and because its use is easy for both the interviewers and interviewees. Fox [11],

Chaudhuri, Christofides and Rao [8], Chaudhuri and Christofides [7], Chaudhuri

[6], Tracy and Mangat [37], and Fox and Tracy [12] provides detailed reviews of

the research on RRT. Further, Warner [39] model which features the quantitative

additive version and is further expanded by Pollock and Bek’s [31].

Furthermore, Eichhorn and Hayre’s [10] introduced a multiplicative scrambling

RRT model for obtaining sensitive quantitative data. Later on, Gupta et al. [17]

modified Eichhorn and Hayre’s [10] scrambling RRT model and developed Optional

Randomized Response Technique (ORRT) and showed that ORRT perform better

than non-optional RRT models. Based on this result Gupta et al. [19] improved

Sousa et al. [33] by using ORRT scrambling model. Additionally, this work is

extended by Gupta et al. [21], Diana and Perri’s [9], Gupta et al. [18, 20, 22, 23],

Kalucha et al. [24], Zhang et al. [41], Zhang et al. [43] and among others.

Recently Kumar and Kour [27, 28] have studied a mean estimation of sensitive

variable in the simultaneously presence of non-response and measurement error in

simple and two-phase sampling. Likewise, Kumar et al. [29] also developed an

improved ratio-cum-product estimator with non-response and measurement error by

utilizing ORRT models: a sensitive estimation approach.

3
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In view of the well-established research interest in the topic of sensitive variables, it

is important to study the idea of simultaneously estimating the mean of a sensitive

variable by using forced quantitative optional randomized response (FQORR) models

by taking inspiration from Ahmed et al. [2] and the other refers to the simultaneous

estimation of two means by making use of the forced quantitative randomized

response (FRQRR) model of Gjestvang and Singh [13] but then re-scrambling

the scrambled scores by following Ahmed et al. [2]. This concept of forcing and

re-scrambling previously scrambled responses appears to be novel in the field of

optional randomized response techniques. The proposed forced quantitative optional

randomized response model and forced re-scrambled optional randomized response

model performance has been studied both analytically and empirically.

1.4 Glimpse of Project

The project is comprises of 3 chapters.

Chapter 1 entitled “Introduction”. In this chapter, we have discussed the

background of the research, concepts, objectives of the study and review of literature.

Chapter 2 entitled “Forced Quantitative ORRT for the Estimation of

Mean of a Sensitive variable”. A general approach for eliciting an optional

randomized response from a sample of individuals in order to estimate the population

mean of a sensitive variable by using forced quantitative randomized response

technique (FQORRT), which consists of a true response, two scrambling variable(s)

and a fixed factor are presented in this chapter. The unbiasedness and variance

properties of the proposed estimator are examined both theoretically and empirically.

For improvement, we choose the proposed FQORR model as it offers an estimator of

the mean and sensitivity level of a sensitive variable and outperforms all considered

competitors i.e. Eichhorn and Hayre model [10], Bar-Lev, Bobovitch, and Boukai

(BBD) model [5], Gjestvang and Singh model [13], Gupta et al. [17,19,21] models.

The findings are confirmed through simulation study reveals that the suggested

model is preferably chosen over several of the existing models that are considered in

4
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literature.

Chapter 3 entitled “Mean Estimation of Sensitive Variable: A Forced

Re-scrambled Optional Randomized Response (FRORR) Approach”. This

chapter introduces a novel approach termed as Forcibly re-scrambled optional ran-

domized response technique (FRORRT) designed for estimating the mean of sensitive

variable while protecting respondents privacy which consists of a true response, two

scrambling variables and a fixed factor which is chosen by the investigator based on

prior experiences but then re-scrambling the scrambled scores because the concept

of re-scrambling responses that have already undergone scrambling appears to be

a novel approach within the area of optional randomized response sampling. The

unbiasedness and variance properties of proposed FRORR model are studied both

theoretically as well as empirically. To enhance our approach, we opt for the FRORR

model because it provides estimates for both the mean and sensitivity level of a

sensitive variable and also outperforms the other considered models. A simulation

study is also conducted which demonstrates that the outcomes of proposed model is

favoured over various existing models under consideration in the literature.

5
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Forced Quantitative ORRT for the Estimation of

Mean of a Sensitive variable

2.1 Introduction

D
ue to privacy concerns, a respondent may be hesitate to reveal the truth

or provide erroneous information in order to obtain sensitive data such

as induced abortions, drug addiction, HIV infection status, incidence of domestic

violence, income, under-reported tax, the status relative to medical conditions etc.

Under these scenarios, when using the direct technique of interview (asking questions

directly to respondents),the respondents frequently make false responses or even

refuse to respond due to social censure or fear (refer Arnab [3]) are likely to contain

response bias. In such cases, Warner [38] introduced the randomized response

method that can be utilized to collect more trustworthy data and protect respondent

anonymity. Following the innovative work of Warner [38], many extensions are

presented such as Fox and Tracy [12], Gjestvang and Singh [13,14], Fox [11], Singh

and Gorey [32] Tarray et al. [34], Ahmed et al. [1, 2] and among others, deals with

only qualitative data.

For quantitative data such as income of person, tax dodging, no. of students cheat

in an exam etc., Eichhorn and Hayre [10] developed a multiplicative randomized

7
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response model by using scrambling variable to estimate the population mean of

sensitive quantitative variable. Further, Gupta et al. [17] proposed ORRT model

which is based on a very simple concept that a query can be sensitive for one person

but not for other. In ORRT, the investigator requested to the interviewee to give

a scramble response if they thought the question is sensitive or else give truthful

responses. Numerous authors including Gupta et al. [19, 21], Mushtaq et al. [30],

Khalil et al. [25, 26] Zhang et al. [42, 43], Tiwari et al [35], Tiwari et al. [36] Kumar

and Kour [28], Zapata et al. [40] Kumar et al. [29], Azeem et al. [4] and so on

suggested an ORRT model for estimating the population mean of sensitive variable

when the auxiliary variable is sensitive or non-sensitive.

As driven by previous discussions and Gjestvang and Singh [13], the main goal of

this chapter is to develop an forced quantitative ORRT model for estimating the

population mean of sensitive variable which is different from the other optional

randomized response technique’s (ORRT), in that, we use value of fixed factor which

is chosen by the investigator based on prior experiences. The rest of the chapter are

arranged in such a manner that review of relevant models are discussed in section

2.2. Section 2.3 describes the proposed FQORRT model. In section 2.4 and 2.5, an

attempt has been made to the compare the proposed estimator with the existing

estimators along with the simulation studies in support of the proposed theoretical

results. The concluding remarks are then elaborated in section 2.6.

2.2 Review of relevant models and strategies

To predict the population mean of µy, we evaluated several of the existing models

with their variances in the context of RRT and ORRT are mentioned below

2.2.1 Eichhorn and Hayre’s [10] Model

Eichhorn and Hayre [10] proposed a scrambled randomised response approach for

determining the mean ‘µy’ and variance ‘σ2
y’ of sensitive study variable Y . After

that, each sample respondent is encouraged to use a randomization device to create

a random number, S (say), from some pre-assigned distribution such as Uniform,

8



Chapter 2

Poisson, Binomial and so on. The distribution of the random variable S, also called

scrambling variable, is assumed to be known and the mean ‘µy’ and variance ‘σ2
y ’ of

scrambling variables are also assumed to be known. The ith respondent in a sample

of size n is asked to report the value Zi(EH) = SiYi as a scrambled response on the

sensitive variable Y . An unbiased estimator of population mean of µy of Eichhorn

and Hayre [10] model is given by

µy(EH)
=

1

n

n∑
i=1

Zi(EH) (2.2.1)

with variance

V (µy(EH)
) =

1

n

[
σ2
y + C2

γ(σ
2
y + µ2

y)
]

(2.2.2)

where C2
γ = σ2

s/µ
2
s denotes the known coefficient of variation of the scrambling variable

S, (µs, σ
2
s) is the mean and variance of the scrambling variable and C2

y = σ2
y/µ

2
y.

2.2.2 Gupta et al. [17] Model

The optional RRT model of Gupta et al. [17] is a modification of the Eichhorn and

Hayre [10] model where the reported response is given by

ZG0 =


Y with probability 1-W

SY with probability W,

(2.2.3)

where W is the sensitivity level of the question and S is a scrambling variable,

independent of Y , with unit mean. It can be proved easily that E(Y ) = E(Z) which

suggests that µy can again be estimated by µy(G0)
= Z̄(G0). The variance of Gupta et

al. [17] estimator is given by

V (µy(G0)
) =

1

n

[
σ2
y +W

σ2
s

µ2
y

(σ2
y + µ2

y)

]
(2.2.4)

The value of W will be close to 1, if a question in the survey is more sensitive then

more people will report scrambled responses. And if the value of W will be close

9
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to 0 then the question is not very sensitive. Thus W is a measure of the level of

sensitivity of the question in the personal interview surveys.

2.2.3 Bar-Lev et al. [5] Model

Bar-Lev et al. [5] developed a modification on the Eichhorn and Hayre [10] randomized

response technique, which is known as BBB method. The probability mass function

of the responses in the BBB approach is given by

Zi(BBB) =


YiS with probability (1-p)

Yi with probability p,

(2.2.5)

Thus, under the BBB model, each respondent is requested to spin a spinner, the

Figure 2.1: BBB randomized response device.

result of which is hidden to the interviewer. If the spinner falls with probability p in

the shaded area, the respondent is asked to provide the genuine real response to the

value of the sensitive variable, say Yi. If the spinner falls with probability (1− p) in

the non-shaded area then the respondent is requested to respond with a scrambled

response, say YiS, where S is a scrambling variable with a known distribution.

Based on BBB model, an unbiased estimator of population mean µy is given by

µy(BBB) =
1

n(1− p)µs + p

n∑
i=1

Zi(BBB)

10
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with variance

V (µy(BBB)) =
µ2
y

n

[
C2

y + (1 + C2
y )C

2
s (p)

]
(2.2.6)

where C2
s (p) =

(1−p)µ2
s(1+C2

γ)+p

[(1−p)µs+p]2
− 1.

2.2.4 Gjestvang and Singh [13] Model

A new model of forced quantitative randomised response (FQRR) is suggested by

Gjestvang and Singh [13]. In their suggested FQRR model, each respondent is asked

to use a randomization device, such as a spinner (or a deck of cards), which consists

three types of statements:

1. Report the real value of the sensitive variable, say Yi.

2. Report the scrambled response, say YiS and

3. Report a fixed value that is already written on the spinner (or card), say F , with

proportions (p1, p2, p3) such that p1 = p2 = p3 = 1. The FQRR model is given by

Zi(GS) =


Yi with probability p1

YiS with probability p2

F with probability p3,

(2.2.7)

where Yi signifies the genuine value of the sensitive variable, YiS denotes the scrambled

value, and F denotes the interviewer’s fixed response.

An unbiased estimator of the population mean µy proposed by Gjestvang and Singh

[13] is given by

µy(GS) =
1
n

∑n
i=1 Zi(GS) − p3F

(p1 + p2µs)

with variance

11
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Figure 2.2: Gjestvang and Singh [13] proposed Forced quantitative randomized
response (FQRR) model.

V (µy(GS)) =
1

n(p1 + p2µs)

[
{p1 + p2(σ

2
s + µ2

s)− (p1 + p2µs)
2}(σ2

y + µ2
y) + p3(1− p3)

F 2 − 2p3F (p1 + p2θ)µy

]
+

σ2
y

n

(2.2.8)

2.2.5 Gupta et al. [21] Model

Under Gupta et al. [21] model, reported responses (ZGi
; i = 1, 2), in the two

sub-samples, are given by

Z(Gi) =


Y with probability T + (1− T )(1−W )

Y Si with probability (1− T )W,

i = 1, 2 (2.2.9)

where Si, i = 1, 2 are independent scrambling variables (both independent of Y ) with

means µsi and variances σ2
si
, respectively. In the model described in (8), note that a

proportion (T ) of the respondents provides truthful responses. From the remaining

respondents, a proportion (W ) provides scrambled responses and the rest provide

truthful responses and E(Z(Gi)) = µy + µsiW (1− T ) where µsi = E(Si); i = 1, 2.

12
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An unbiased estimator of Gupta et al. [21] model is given by

µyGi
=

µs1Z̄G1 − µs2Z̄G2

µs1 − µs2

with variance

V (µyGi
) =

1

(µs1 − µs2)
2

(
µ2
s2

σ2
z1

n1

+ µ2
s1

σ2
z2

n2

)
(2.2.10)

2.2.6 Gupta et al. [19] Model

According to Gupta et al. [19] model, each selected respondent provides an additively

scrambled response for Y if they consider the question sensitive, and a truthful

response otherwise. The reported response for the study variable can be written as

Z(Gyw) = Y + ST , where T is a Bernoulli random variable with parameter W and S

is a scrambling variable with zero mean and known variance σ2
s . The expected value

of the observed response Z(Gyw) is E(Z(Gyw)) = E(Y + ST ) = E(Y ) = µyw.

Therefore, an unbiased estimator of the study variable Y is defined as

µy(Gyw) =
1

n

n∑
i=1

Z(Gyw)

with variance

V (µy(Gyw)) =
1− f

n
(σ2

y +Wσ2
s) (2.2.11)

where f = n/N is the sampling fraction.

2.3 Proposed Forced Quantitative ORRT Model

A modification of Gjestvang and Singh [13] model by adopting a new forced quan-

titative optional randomized response (FQORR) model is developed in this study

in which each respondent is asked to use a randomization device, such as a spinner

(or a deck of cards), which contains three sorts of statements i.e. Firstly, report the

real value of the sensitive variable (Yi). Secondly, report the scrambled response i.e

S1Y + S2 and then report a fixed value which is already written on the spinner (or

13
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card), say F , with proportions p1, p2 and p3 respectively, such that p1 = p2 = p3 = 1

and (S1, S2) are two scrambling variables with variances σ2
s1

and σ2
s2
, respectively

and we take S1 with a mean (µs1) of 1 and S2 with a mean (µs2) of 0.

Analytically, the probability mass function for the ith response in the FQORR model

is given by

Z(Fi) =


Yi with probability p1

S1 + YiS2 with probability p2

F with probability p3,

(2.3.1)

where Yi signifies the true value of the sensitive variable, (S1 + YiS2) denotes the

scrambled value, and F denotes the interviewer’s forced or fixed response.

Taking the expected value of Z(Fi), we get

E(Z(Fi)) = µyi(p1 + p2) + p3F

Then, the proposed unbiased estimator of the population mean µyi is given as

µy(Fi)
=

1
n

∑n
i=1 Z(Fi) − p3F

p1 + p2
(2.3.2)

The variance of the proposed unbiased estimator is given as

V (µy(Fi)
) = E1V2(µy(Fi)

) + V1E2(µy(Fi)
) =

1

n(p1 + p2)2

[
{p1 + p2(1 + σ2

s1
+ σ2

s2
)

−(p1 + p2)
2}(σ2

y + µ2
y) + p3(1− p3)F

2 − 2p3F (p1 + p2)σy

]
+

σ2
y

n

(2.3.3)

which is optimal when

Fopt. =
(p1 + p2)σy

(1− p3)
(2.3.4)

14
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After substituting (2.3.4) in (2.3.3), we get the minimum variance of the proposed

unbiased estimator which is given as

min.V (µyFi
) =

µ2
y

n

[{
p1 + p2(1 + σ2

s1
+ σ2

s2
)

(p1 + p2)2
− 1

}
(C2

y + 1)− p3
1− p3

C2
y + 1

]
(2.3.5)

2.4 Efficiency Comparisons

The effectiveness of the proposed FQORR model is compared with different existing

models, including Eichhorn and Hayre’s [10] model, Gupta et al. [17, 19,21] model,

Bar-Lev et al. [5] model and Gjestvang and Singh [13] model. Following are the

conditions obtained by using the equations (2.2.2), (2.2.4), (2.2.6), (2.2.8), (2.2.10),

(2.2.11) and (2.3.5), respectively.

(i) min.V (µy(Fi)
) < V (µy(EH))

if {δ1 − 1− C2
γ}(C2

y )−
(

p3
1− p3

+ 1

)
C2

y + 1 < 0 (2.4.1)

(ii) min.V (µy(Fi)
) < V (µy(G0))

if
µ2
y

n

[
{(δ1 − 1)(C2

y + 1)} − p3
1− p3

C2
y + 1

]
− 1

(θ2 − θ1)2
δ2 < 0 (2.4.2)

(iii) min.V (µy(Fi)
) < V (µy(BBB))

if

[
{(δ1 − 1)(C2

y + 1)} − C2
y

(
p3

1− p3
+ 1− C2

s(p)

)
+ 1− C2

s(p)

]
< 0 (2.4.3)

(iv) min.V (µy(Fi)
) < V (µy(GS))

if

[{
δ2 −

p3
1− p3

}
(C2

y + 1) + 2

]
< 0 (2.4.4)
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(v) min.V (µy(Fi)
) < V (µy(Gi))

if
µ2
y

n

[
{(δ1 − 1)(C2

y + 1)} − p3
1− p3

C2
y + 1

]
− λ(σ2

y +Wσ2
s) < 0 (2.4.5)

(v) min.V (µy(Fi)
) < V (µy(Gyw))

if

[{
δ1 −W 2 − p3

1− p3
− 2

}
(C2

y + 1)

]
< 0 (2.4.6)

Once the aforesaid conditions are met then it is obvious that the suggested forced

ORRT estimator µy(Fi)
is efficient than the existing one. To verify the effectiveness

of the aforementioned relationships, we conduct a simulation study with R software,

which is detailed in the next section.

2.5 Simulation Study

To acquire a better grasp of the efficiency of the proposed model, we use R software

to run a simulation study to test the effectiveness of our proposed model vs Eichhorn

and Hayre’s [10] model, Gupta et al. [17, 19, 21] model, Bar-Lev et al. [5] model

and Gjestvang and Singh [13] model, we have generated a population of N = 3000,

took a sample of size n = 500. The variables X = rnorm(N, 0, 1) and Y , which is

connected to X is defined as Y = X + rnorm(N, 0, 1) also generated from normal

distribution. The scrambling variable S1 is also taken from normal distribution with

mean 1 and varying variances i.e. (0.5, 1, 1.5) and S2 = rnorm(N, 0, 2) is also taken

from normal distribution and results are averaged over 3, 000 iterations.

To determine the amount of the percent relative efficiency, we calculated the ratio of

the variance of existing model(s) i.e. Eichhorn and Hayre’s [10], Gupta et al. [17],

Bar-Lev et al. [5], Gjestvang and Singh [13], Gupta et al. [21] and Gupta et al. [19]

to that of the suggested FQRR model i.e. µy(Fi)
as

RE(µy(j) , µy(Fi)
) =

V (µy(j))

V (µy(Fi)
)
× 100 (2.5.1)

16
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where (j) = (EH), (G0), (BBB), (GS), (Gi), (Gyw).

17
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ter
2

p1 p2 p3 RE(µy(EH)
, µy(Fi)

) RE(µy(G0)
, µy(Fi)

) RE(µ(yBBB), µy(Fi)
) RE(µy(GS)

, µy(Fi)
) RE(µy(Gi)

, µy(Fi)
) RE(µy(Gyw)

, µy(Fi)
)

0.4 0.3 0.3 762.5346 106.6169 1336.9090 1279.2460 165.4933 195.1718

0.5 0.4 0.1 286.4923 40.0570 502.2910 1127.5480 62.1775 73.3281

0.6 0.2 0.2 286.4923 40.0570 502.2910 1127.5480 62.1775 73.3281

0.7 0.2 0.1 742.8762 103.8683 1302.4440 585.4211 161.2268 190.1402

0.8 0.1 0.1 1209.9520 169.1743 2121.3410 336.9696 262.5965 309.6889

0.3 0.3 0.4 923.3165 129.0973 1618.8000 1497.2330 200.3879 236.3242

0.3 0.2 0.5 2792.4520 390.4380 4895.8500 1423.5680 606.0473 714.7319

0.2 0.2 0.6 3315.1630 463.5230 5812.2920 1598.2340 719.4918 848.5208

0.1 0.2 0.7 3258.7950 455.6417 5713.4650 1569.3910 707.2582 834.0933

0.3 0.4 0.3 395.5167 55.3007 693.4374 1503.9290 85.8392 101.2331

0.3 0.5 0.2 199.4007 27.8800 349.5981 1483.0350 43.2760 51.0368

0.2 0.6 0.2 118.4566 16.5624 207.6833 1554.4260 25.7086 30.3191

0.4 0.2 0.4 2127.3610 297.4456 3729.7840 1184.7410 461.7024 544.5011

0.4 0.4 0.2 343.3730 48.0100 602.0168 1319.6490 74.5224 87.8868

Table 2.1: Relative Efficiency of the FQRR model with respect to other existing model(s) when σ2
s1
= 0.5
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p1 p2 p3 RE(µy(EH)
, µy(Fi)

) RE(µy(G0)
, µy(Fi)

) RE(µ(yBBB), µy(Fi)
) RE(µy(GS)

, µy(Fi)
) RE(µy(Gi)

, µy(Fi)
) RE(µy(Gyw)

, µy(Fi)
)

0.4 0.3 0.3 541.5128 141.0462 949.4044 908.4551 117.5248 138.6010

0.5 0.4 0.1 205.2948 53.4725 359.9320 807.9793 44.5552 52.5455

0.6 0.2 0.2 869.7640 226.5447 1524.9090 606.4172 188.7654 222.6173

0.7 0.2 0.1 622.9618 162.2609 1092.2040 490.9230 135.2018 159.4480

0.8 0.1 0.1 1099.7000 286.4354 1928.0420 306.2646 238.6685 281.4697

0.3 0.3 0.4 623.1727 162.3159 1092.5740 1010.5250 135.2475 159.5019

0.3 0.2 0.5 1973.4630 514.0217 3459.9630 1006.0540 428.3018 505.1106

0.2 0.2 0.6 2219.6080 578.1344 3891.5160 1070.0690 481.7228 568.1119

0.1 0.2 0.7 2073.7890 540.1533 3635.8580 998.7083 450.0755 530.7891

0.3 0.4 0.3 259.0130 67.4643 454.1131 984.8815 56.2137 66.2947

0.3 0.5 0.2 127.9786 33.3342 224.3778 951.8362 27.7752 32.7563

0.2 0.6 0.2 72.0022 18.7542 126.2376 944.8373 15.6266 18.4290

0.4 0.2 0.4 1581.7640 411.9972 2773.2190 880.8945 343.2912 404.8548

0.4 0.4 0.2 235.7066 61.3937 413.2514 905.8666 51.1555 60.3294

Table 2.2: Relative Efficiency of the FQRR model with respect to other existing model(s) when σ2
s1
= 1
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p1 p2 p3 RE(µy(EH)
, µy(Fi)

) RE(µy(G0)
, µy(Fi)

) RE(µ(yBBB), µy(Fi)
) RE(µy(GS)

, µy(Fi)
) RE(µy(Gi)

, µy(Fi)
) RE(µy(Gyw)

, µy(Fi)
)

0.4 0.3 0.3 335.9017 176.2597 588.9178 563.5169 72.9009 85.9745

0.5 0.4 0.1 128.6436 67.5039 225.5437 506.3029 27.9195 32.9265

0.6 0.2 0.2 642.4595 337.1216 1126.3890 447.9358 139.4333 164.4384

0.7 0.2 0.1 481.8819 252.8608 844.8567 379.7454 104.5831 123.3383

0.8 0.1 0.1 953.7748 500.4800 1672.2000 265.6248 206.9983 244.1200

0.3 0.3 0.4 363.0305 190.4952 636.4813 588.6835 78.7887 92.9181

0.3 0.2 0.5 1221.2390 640.8281 2141.1310 622.5771 265.0462 312.5779

0.2 0.2 0.6 1282.4660 672.9559 2248.4760 618.2741 278.3342 328.2489

0.1 0.2 0.7 1121.7370 588.6156 1966.6780 540.2130 243.4511 287.1100

0.3 0.4 0.3 145.4141 76.3040 254.9465 552.9286 31.5593 37.2189

0.3 0.5 0.2 70.1720 36.8218 123.0288 521.9020 15.2294 17.9606

0.2 0.6 0.2 37.1172 19.4767 65.0756 487.0650 8.0555 9.5002

0.4 0.2 0.4 1044.4260 548.0482 1831.1350 581.6477 226.6724 267.3224

0.4 0.4 0.2 140.0395 73.4837 245.5234 538.1990 30.3928 35.8433

Table 2.3: Relative Efficiency of the FQRR model with respect to other existing model(s) when σ2
s1
= 1.5
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Tables 2.1, 2.2 and 2.3 illustrates the values of Relative Efficiency of the suggested

model as compared with existing model(s) with different values of variance of

scrambling variable S1 i.e. (0.5,1,1.5). It follows that the relative efficiency by using

the suggested forced quantitative ORRT estimator (µy(Fi)
) over Bar-Lev et al. [5]

(µy(BBB)
) estimator is larger as compared to the other considerable estimator’s i.e.

Eichhorn and Hayre [10] (µy(EH)
), Gupta et al. [17, 19, 21] (µy(G0)

, µy(Gi)
, µy(Gyw)

),

Gjestvang and Singh [13] (µy(GS)
) estimator(s). Thus, proposed forced quantitative

ORRT estimator (µy(Fi)
) over Bar-Lev et al. [5] (µy(BBB)

) estimator is better than

the other competing estimators and our recommendation is to prefer the proposed

forced quantitative optional randomized response technique (FQORRT) in practice.

2.6 Conclusion

In this chapter, a revised forced quantitative optional randomised response (FQORR)

model has been proposed and explored. The suggested FQORR model that is

discovered is found to be more efficient than the other existing models developed by

Eichhorn and Hayre’s [10], Gupta et al. [17, 19, 21], Bar-Lev et al [5], Gjestvang and

Singh [13], respectively and the characteristics up to the first order of approximation

are also analysed. To back up the theoretical results, we have conducted a simulation

study using R software and based on simulation results, it is clear that the suggested

estimator (µy(Fi)
) over Bar-Lev et al. estimator i.e. (µy(BBB)

) is more efficient than the

other competing estimator(s). As a result, the proposed forced optional randomized

response (FQORR) model may be urged to survey practitioners in real-life problems

whenever they intend to cope with stigmatized concerns.
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3

Mean Estimation of Sensitive Variable: A Forced

Re-scrambled Optional Randomized Response (FRORR)

Approach

3.1 Introduction

G
aining insight into sensitive aspects of life such as drugs consumption,

support for terrorism, incidence of domestic violence, criminal activi-

ties, under-reported tax and so on, frequently depends on people being honest in

their disclosures. In such situations, employing direct interview techniques (asking

questions directly to respondents) often results in respondents providing inaccurate

responses or opting not to respond, potentially influenced by social disapproval or

fear introducing a likelihood of response bias. To address these challenges, Warner

[38] initially introduced a method widely recognized as Randomized Response Tech-

nique (RRT). The purpose of RRT is to collect information about personal and

socially undesirable behaviour. Building upon this legacy, Greenberg et al. [15]

and Warner [39] have further advanced this approach. Moreover, Fox and Tracy

[12] introduced a method for sensitive surveys by using RRT. Gjestvang et al. [13]

developed forced quantitative randomized response model for estimating the mean of

23
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sensitive variable. Further, Gjestvang et al. [14],Fox [11], Tarray et al. [34] , Ahmed

et al. [1] introduced an innovative work that deals with only qualitative data for the

estimation of sensitive variable.

Certain variables possess a quantitative natures including income, expenditures,

property, tax dodging etc., to deal with these problems, Eichhorn and Hayre [10]

was the first to introduce scrambled RRT. Gupta et al. [17] proposed ORRT model

which is based on a very simple concept that a question can be sensitive for one

person but not for other. Further, Gupta and Shabbir [16] uses personal interview to

address sensitive estimation. Using ORRT approach, various authors such as Gupta

et al. [19,21], Zhang et al. [43], Kumar and Kour [27,28], Kumar e al. [29] and so

on proposed a ORRT model for estimating the mean of sensitive variable.

Building upon prior discussions and work presented by Ahmed et al. [2], the primary

goal of this research is to focussed on developing a Forced re-scrambled optional

randomized response technique (FRORRT) model for estimating the mean of a

sensitive variable that is distinct from other models as it incorporates a fixed factor

value chosen by the investigator based on prior experiences and then re-scrambling

the already scrambled scores. The rest of the chapter is structured in a way that

review of relevant models are discussed in section 3.2. Section 3.3 describes the

proposed FQORRT model. In section 3.4 and 3.5, an attempt has been made to

the compare the proposed estimator with the existing estimators along with the

simulation studies in support of the proposed theoretical results. The concluding

remarks are then elaborated in section 3.6.

3.2 Some Existing Models

In the framework of RRT and ORRT, we have examined several existing models

with their variances to estimate the population mean µy are listed in Table 3.1.
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Models Unbiased Estimator Variances

Eichhorn and Hayre [10]
µy(EH)

= 1
n

∑n
i=1 Zi(EH)

V (µy(EH)
) = 1

n

[
σ2
y + C2

γ(σ
2
y + µ2

y)
]

Zi(EH) = SiYi where C2
γ = σ2

s/µ
2
s

Gupta et al. [17]

µy(G0)
= Z̄(G0) V (µy(G0)

) = 1
n

[
σ2
y +W σ2

s

µ2
y
(σ2

y + µ2
y)

]
ZG0 =

{
Y with probability 1-W

SY with probability W,

Bar-Lev et al. [5]

µy(BBB) =
1

n(1−p)µs+p

∑n
i=1 Zi(BBB)

V (µy(BBB)) =
µ2
y

n

[
C2

y + (1 + C2
y )C

2
s (p)

]
Zi(BBB) =

{
YiS with probability (1-p)

Yi with probability p,
where C2

s (p) =
(1−p)µ2

s(1+C2
γ)+p

[(1−p)µs+p]2
− 1

Gjestvang and Singh [13]

µy(GS) =
1
n

∑n
i=1 Zi(GS)−p3F

(p1+p2µs)

V (µy(GS)) =
1

n(p1+p2µs)

[
{p1 + p2(σ

2
s + µ2

s)− (p1 + p2µs)
2}(σ2

y + µ2
y)+

Zi(GS) =


Yi with probability p1

YiS with probability p2

F with probability p3,

p3(1− p3)F
2 − 2p3F (p1 + p2θ)µy

]
+

σ2
y

n

which is optimal when F = (p1+p2µs)µy

(1−p3)

min.V (µy(GS)) =
1
n

[
(p1+p2µ2

s(1+C2
γ))(σ

2
y+µ2

y)

(p1+p2µs)2
− 1− p3

1−p3

]
Gupta et al. [21]

µyGi
=

µs1 Z̄G1
−µs2 Z̄G2

µs1−µs2 V (µyGi
) = 1

(µs1−µs2 )
2

(
µ2
s2

σ2
z1

n1
+ µ2

s1

σ2
z2

n2

)
Z(Gi) =

{
Y with probability T + (1− T )(1−W )

Y Si with probability (1− T )W, i = 1, 2

Gupta et al. [19]
µy(Gyw) =

1
n

∑n
i=1 Z(Gyw) V (µy(Gyw)) =

1−f
n
(σ2

y +Wσ2
s)

Z(Gyw) = Y + ST

Ahmed et al. [2]

µy1(A)
=

{Wµs1µs2 + (1−W )(σ2
s2
+ µ2

s2
)}Z1A−

µs2Z2A − (1−W )Fσ2
s2

(1−W )µs1σ
2
s2

−Wµs2σ
2
s2

V (µy1(A)
) =

{Wµs1µs2+(1−W )(σ2
s2

+µ2
s2

)}2σ2
z1

+µ2
s2

σ2
z2

−2µs2{Wµs1µs2+(1−W )(σ2
s2

+µ2
s2

)}σz1z2

{(1−W )µs1σ
2
s2

−Wµs2σ
2
s1

}2

Z1(A) = Y1S1Y2S2 + F
which is optimal when

Z2(A) =

{
Y1S

2
1 + Y2S1S2 + FS1 with probabilityW

Y1S1S2 + Y2S
2
2 + FS2 with probability (1−W ),

F =
µs2T2−{Wµs1µs2+(1−W )(σ2

s2
+µ2

s2
)}{Wµy1σ

2
s1

+(1−W )µy2σ
2
s2

}2

T1µs2

(Z2(A) is re-scrambled response)

µy2(A)
=

µs1Z2A − Z1A{W (σ2
s2
+ µ2

s2
)+

(1−W )µs1µs2}WFσ2
s2

(1−W )µs1σ
2
s2

−Wµs2σ
2
s1

min.V (µy1(A)
) = V (µy1(A)

) +
µs2T2−{Wµs1µs2+(1−W )(σ2

s2
+µ2

s2
)}{Wµy1σ

2
s1

+(1−W )µy2σ
2
s2

}2

nT1{(1−W )µs1σ
2
s2

−Wµs2σ
2
s1

}2}2

V (µy2(A)
) =

{W (σ2
s2

+µ2
s2

)+(1−W )µs1µs2}
2σ2

z1
+µ2

s1
σ2
z2

−2µs1{W (σ2
s2

+µ2
s2

)+(1−W )µs1µs2}σz1z2

n{(1−W )µs1σ
2
s2

−Wµs2σ
2
s1

}2

which is optimal when

F =
µs1T2−{W (σ2

s2
+µ2

s2
)+(1−W )µs1µs2}{Wµy1σ

2
s1

+(1−W )µy2σ
2
s2

}2

T1µs1

min.V (µy2(A)
) = V (µy2(A)

) +

[
µs1T2−{W (σ2

s2
+µ2

s2
)+(1−W )µs1µs2}{Wµy1σ

2
s1

+(1−W )µy2σ
2
s2

}2
]2

nT1{(1−W )µs1σ
2
s2

−Wµs2σ
2
s1

}2}2

where T1 = W (σ2
s1

+ µ2
s1
) + (1−W )(σ2

s2
+ µ2

s2
)− (Wµs1 + (1−W )µs2 )

2 and

T2 = W{(σ3
s1

+ 3µs1σ
2
s1

+ µ3
s1
)µy1 + (σ2

s1
+ µ2

s1
)µs2µy2}+ (1−W ){(σ3

s2
+ 3µs2σ

2
s2

+ µ3
s2
)µy2 + (σ2

s2
+ µ2

s2
)µs1µy1} − (Wµs1 + (1−W )µs2 ){W ((σ2

s1
+ µ2

s1
)µy1 + µs1µs2µy2 ) + (1−

W )(µs1µs2µy1 + (σ2
s2

+ µ2
s2
)muy2 ).

Table 3.1: Several Existing Models in the context of RRT and ORRT
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3.3 Forced Re-scrambled ORRT Model

Recently, Ahmed et al. [2] have proposed a method for concurrently estimating

the means of two sensitive variables by collecting one scrambled response and other

new re-scrambled response by making use of the forced quantitative randomized

response model of Gjestvang and Singh [13]. Driven by Ahmed et al. [2], we apply

the forced re-scrambled optional randomized response model (FRORRT) to expand

their concept to the mean estimation of sensitive variable and also re-scrambled

the scrambled scores by using FRORRT. Suppose that there is one quantitative

sensitive variables of interest Y in a finite population of size N units. Let ȳ be the

corresponding population mean, which we wish to estimate. Assume we select a

simple random sample without replacement (SRSWOR) of size n from the population.

Each respondent selected in the sample is asked to generate two scrambling variables

S1 and S2 and the distributions of the scrambling variables S1 and S2 are assumed

to be known. Let E(S1) = 1, V (S1) = σ2
s1

and E(S2) = 0, V (S2) = σ2
s2
. Now, each

respondent is asked to report a scrambled response given by

Z1 = S1Y + S2 (3.3.1)

All respondents are also requested to draw a card from a deck consisting of two types

of cards, similar to the Warner [38] device, but that has different types of outcomes.

In the deck, let W be the proportion of cards bearing the statement, “Please report

the value of the scrambling variable S1 which you used in scrambling the response

on two sensitive variables”. Let (1 − W ) be the proportion of cards bearing the

statement,“Please report the value of the scrambling variable S2 which you used in

scrambling the response on two sensitive variables”. Thus the second response from
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the ith respondent is given by

Z2 =


S1 with probability W

S2 with probability 1−W

(3.3.2)

Our approach distinguishes itself from the existing randomized response techniques

found in the literature. Specifically, unlike existing methods, we introduce a novel

step where, from the initial scrambled response in (3.3.1), the interviewer generates

a re-scrambled response Z∗
1 = Z1 + F , where F is predetermined and chosen by the

investigator based on past experience. In practical terms, we begin with equivalent

information from a respondent as in the Ahmed et al. [1] model. However, during

the estimation stage, the investigator introduces a re-scrambling process to the

initial observed response by incorporating a constant F . It’s worth noting that

respondents can alternatively be instructed to add the constant before providing

their response, with the same effect. The resulting modified first response, denoted

as Z∗
1 , is expressed as follows

Z∗
1 = S1Y + S2 + F (3.3.3)

Taking expected value on both sides of (3), we get

E(Z∗
1) = E(S1Y + S2 + F ) = Y + F

From Z∗
1 and Z2, we create an additional re-scrambled response Z∗

2 given as

Z∗
i = Z1Z2 =


S2
1Y + S1S2 + S1F with probability W

S1S2Y + S2
2 + S2F with probability 1−W

(3.3.4)

Now, Taking the expected value of Z∗
2 , we get

E(Z∗
2) = Wσ2

s1
Y +WY +WF + σ2

s2
−Wσ2

s2

Then, we have

E(S3
1) = σ3

s1
+ 3σ2

s1
+ 1, E(S3

2) = σ3
s2
, E(S4

1) = σ4
s1
+ 4σ3

s1
+ 6σ2

s1
+ 1, E(S4

2) = σ4
s2
;
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E(S2
1S

2
2) = (σ2

s1
+ 1), E(S1S

3
2) = σ3

s2
, E(S3

1S2) = 0

The proposed unbiased estimator of the population mean µy is given as

µy(RF )
=

1
n

∑n
i=1 Z

∗
i −WF − σ2

s2
(1−W )

W (σ2
s1
+ 1)

(3.3.5)

The variance of the proposed unbiased estimator is given as

V (µy(RF )
) = E1V2(µy(RF )

) + V1E2(µy(RF )
) =

1

n
[
W 2(σ2

s1
+ 1)2

][(WA1 −W 2A1−

WA2 +W 2A2)(σ
2
y + µ2

y) + (WA3 −W 2A3 −Wσ2
s2
−W 2σ2

s2
)F 2 +W (A2−

WA2 − A1 +WA1) + 2FA4σ
3
y + (1−W )2σ3

s2
+ 2σyσ

3
s2

]
+

σ2
y

n

(3.3.6)

which is optimal when

Fopt. =
W 2A4σy − (1−W )2σ3

s2

2(WA3 −W 2A3 +Wσ2
s2
−W 2σ2

s2
)

(3.3.7)

After substituting (3.3.7) in (3.3.6), we get the minimum variance of the proposed

unbiased estimator which is given as

min.V (µy(RF )
) =

1

n
[
W 2(σ2

s1
+ 1)2

][(WA1 −W 2A1 −WA2 +W 2A2)(σ
2
y + µ2

y)+

W 2A4σy − (1−W )2σ3
s2

(WA3 −W 2A3 −Wσ2
s2
−W 2σ2

s2
)
(1 + 2σy) + 2σyσ

3
s2
+ σ2

y

[
W 2(σ2

s1
+ 1)2

]]
(3.3.8)

3.4 Efficiency Comparisons

The performance of the proposed FRORR model is evaluated by comparing it

with various existing models i.e., models by Eichhorn and Hayre [10], Gupta et al.

[17,19,21], Bar-Lev et al. [5], Gjestvang and Singh [13] and Ahmed et al. [2]. The

conditions derived in Table 1 and (8) are presented below for each respective model.
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(i) min.V (µy(Fi)
) < V (µy(EH))

if
1

W 2A2
3

[
(δ1 − C2

γ)(σ
2
y + µ2

y) + δ2(1 + 2σy) + 2σyσ
2
s2
+ σ2

y(W
2A2

3 + 1)
]
< 0

(3.4.1)

(ii) min.V (µy(RF )
) < V (µy(G0))

if

[(
δ1

W 2A2
3

−W
σ2
s

µ2
y

)
(σ2

y + µ2
y) +

δ2
W 2A2

3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y(W
2A2

3 + 1)

]
< 0

(3.4.2)

(iii) min.V (µy(RF )
) < V (µy(BBB))

if

[(
δ1

W 2A2
3

−−C2
s (p)

)
(σ2

y + µ2
y) +

δ2
W 2A2

3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y(W
2A2

3 + 1)

]
< 0

(3.4.3)

(iv) min.V (µy(RF )
) < V (µy(GS))

if

[(
δ1

W 2A2
3

−
{
p1 + p2µ

2
s(1 + C2

γ)

(p1 + p2µs)2

})
(σ2

y + µ2
y) +

δ2
W 2A2

3

(1 + 2σy) + 2σyσ
2
s2

+
p3

1− p3
+ σ2

y(W
2A2

3 + 1)

]
< 0

(3.4.4)

(v) min.V (µy(RF )
) < V (µy(Gi))

if

[(
δ1

W 2A2
3

(σ2
y + µ2

y) +
δ2

W 2A2
3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y

)
− 1

(µs1 − µs1)
2
δ3

]
< 0

(3.4.5)
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(vi) min.V (µy(RF )
) < V (µy(Gyw))

if

[(
δ1

W 2A2
3

(σ2
y + µ2

y) +
δ2

W 2A2
3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y

)
−
(
1− n

N

)
(σ2

y −Wσ2
s)

]
< 0 (3.4.6)

(vii) min.V (µy(RF )
) < min.V (µy(1(A)))

if

[(
δ1

W 2A2
3

(σ2
y + µ2

y) +
δ2

W 2A2
3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y

)
− V (µ1(A))−

δ4
T1δ5

]
< 0

(3.4.7)

(viii) min.V (µy(RF )
) < min.V (µy(2(A)))

if

[(
δ1

W 2A2
3

(σ2
y + µ2

y) +
δ2

W 2A2
3

(1 + 2σy) + 2σyσ
2
s2
+ σ2

y

)
− V (µ2(A))−

δ6
T1δ5

]
< 0

(3.4.8)

where

δ1 = WA1 −W 2A1 +WA2 +W 2A2,

δ2 =
W 2A4σy−(1−W )2σ3

s2

(WA3−W 2A3−Wσ2
s2

−W 2σ2
s2

)
,

δ3 =

(
µ2
s2

σ2
z1

n1
+ µ2

s1

σ2
z2

n2

)
,

δ4 = µs2T2 − {Wµs1µs2 + (1−W )(σ2
s2
+ µ2

s2
)}{Wµy1σ

2
s1
+ (1−W )µy2σ

2
s2
}2,

δ5 = {(1−W )µs1σ
2
s2
−Wµs2σ

2
s1
}2,

δ6 = µs1T2 − {W (σ2
s2
+ µ2

s2
) + (1−W )µs1µs2}{Wµy1σ

2
s1
+ (1−W )µy2σ

2
s2
}2.

When the aforementioned conditions are satisfied then it is clear that the proposed

forced re-scrambled ORRT estimator muyRF
is more efficient than the existing one.

To validate the effectiveness of the above relationships, we carried out a simulation

study using R software, as described in the next section.
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3.5 Simulation Study Using R Software

The use of simulation studies is to validate results has been established. The

properties of the proposed FRORRT model have been investigated for various

sample sizes and also test the effectiveness of our proposed model over existing

ones. We have generated a population of N = 3000 with varying sample sizes.

The variables X = rnorm(N, 0, 1) and Y , which is connected to X is defined as

Y = X + rnorm(N, 0, 1) also generated from normal distribution. The scrambling

variable S1 = rnorm(N, 1, 0.5) and S2 = rnorm(N, 0, 1) is also taken from normal

distribution. The proportions (p1, p2, p3) are fixed i.e., p1 = 0.2, p2 = 0.3 and p3 = 0.5

such that p1 = p2 = p3 = 1.

To determine the amount of the percent relative efficiency, we calculated the ratio

of the variance of existing model(s) i.e. Eichhorn and Hayre [10], Gupta et al. [17],

Bar-Lev et al. [5], Gjestvang and Singh [13], Gupta et al. [21], Gupta et al. [19] and

Ahmed et al. [2] to that of the suggested FRORR model i.e. µyRF
as

RE(µyj , µyRF
) =

V (µyj)

V (µyRF
)
× 100 (3.5.1)

where j =
[
(EH), (G0), (BBB), (GS), (Gi), (Gyw), 1(A), 2(A)

]
.
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ter
3

W RE(µy(EH)
, µy(Fi)

)RE(µy(G0)
, µy(Fi)

)RE(µ(yBBB), µy(Fi)
)RE(µy(GS)

, µy(Fi)
)RE(µy(Gi)

, µy(Fi)
)RE(µy(Gyw)

, µy(Fi)
)RE(µy1(A)

, µy(Fi)
)RE(µy2(A)

, µy(Fi)
)

F=0.2

0.1 1327.4059 314.0923 1103.4895 393.6199 98.4114 42.0383 153.4019 197.0759

0.2 1244.5467 484.7345 876.3364 369.0494 91.3820 43.6256 145.0711 202.4839

0.3 936.9299 477.1954 557.6821 277.8308 68.1345 36.2340 110.7019 175.0679

0.4 539.8316 327.1314 271.2355 160.0780 38.8805 23.1533 65.2149 123.8414

0.5 238.8176 163.9246 100.9776 70.81735 17.0356 11.3442 29.9851 73.8162

F=0.4

0.1 1306.3551 309.1113 1085.9897 387.3614 96.8507 41.3716 150.9485 193.4999

0.2 1214.3752 472.9831 855.0914 360.0874 89.1666 42.5679 141.5336 197.1286

0.3 904.8667 460.8650 538.5974 268.3117 65.8029 34.9941 106.8970 168.7177

0.4 516.6197 313.0652 259.5727 153.1884 37.2087 22.1577 62.4004 118.2913

0.5 228.0659 156.5447 96.4316 67.6262 16.2686 10.8334 28.6300 70.3812

F=0.6

0.1 1264.6893 299.2523 1051.3524 375.3098 93.7617 40.0521 146.1173 186.9640

0.2 1167.6799 454.7959 822.2114 346.5212 85.7380 40.9311 136.0747 189.1860

0.3 862.5356 439.3050 513.4009 255.9665 62.7245 33.3570 101.8827 160.5322

0.4 488.8204 296.2192 245.6052 145.0626 35.2065 20.9654 59.03417 111.7415

0.5 215.8026 148.1271 91.2463 64.0416 15.3939 10.2509 27.0863 66.5038

Table 3.2: Relative Efficiency of the FQRR model with respect to other existing model(s) when n = 650
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W RE(µy(EH)
, µy(Fi)

)RE(µy(G0)
, µy(Fi)

)RE(µ(yBBB), µy(Fi)
)RE(µy(GS)

, µy(Fi)
)RE(µy(Gi)

, µy(Fi)
)RE(µy(Gyw)

, µy(Fi)
)RE(µy1(A)

, µy(Fi)
)RE(µy2(A)

, µy(Fi)
)

F=0.2

0.1 1145.9503 171.6243 976.5035 359.7750 78.3251 39.8975 139.4900 178.9593

0.2 1050.5009 275.4779 757.7887 329.8084 71.0949 39.6585 129.1328 181.1427

0.3 763.4961 289.6565 465.1755 239.7022 51.1630 30.6434 95.3168 152.8919

0.4 421.2022 211.8892 216.3606 132.2379 27.9479 17.5077 53.9392 105.1083

0.5 178.9069 113.6493 77.1969 56.1684 11.7542 8.0729 23.9468 61.2395

F=0.4

0.1 1128.8284 169.0600 961.9134 354.9071 77.1548 39.3014 137.4001 176.1651

0.2 1024.0953 268.5534 738.7407 321.9787 69.3078 38.6616 125.8804 176.4532

0.3 735.2022 278.9223 447.9369 231.1498 49.2670 29.5078 91.7787 147.1039

0.4 401.0684 201.7607 206.0184 126.0971 26.6119 16.6708 51.3568 100.0005

0.5 169.7094 107.8067 73.2282 53.3571 11.1500 7.6578 22.7135 58.0464

F=0.6

0.1 1095.010 163.9952 933.0962 345.0592 74.8434 38.1240 133.2817 170.8424

0.2 984.9321 258.2835 710.4900 310.3713 66.6574 37.1831 121.0634 169.6392

0.3 699.6251 265.4250 426.2609 220.4655 46.8829 28.0799 87.3341 139.9158

0.4 378.0862 190.1993 194.2130 119.1423 25.0870 15.7155 48.4114 94.2170

0.5 159.7050 101.4514 68.9114 50.3261 10.4927 7.2064 21.3731 54.5934

Table 3.3: Relative Efficiency of the FQRR model with respect to other existing model(s) when n = 700
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W RE(µy(EH)
, µy(Fi)

)RE(µy(G0)
, µy(Fi)

)RE(µ(yBBB), µy(Fi)
)RE(µy(GS)

, µy(Fi)
)RE(µy(Gi)

, µy(Fi)
)RE(µy(Gyw)

, µy(Fi)
)RE(µy1(A)

, µy(Fi)
)RE(µy2(A)

, µy(Fi)
)

F=0.2

0.1 1320.6529 946.7111 1056.6353 388.5980 89.6534 40.0348 141.6644 195.2950

0.2 1216.3969 2087.2438 823.7572 357.9210 81.7725 40.0102 131.6755 196.6427

0.3 893.7486 2896.1367 511.0112 262.9827 59.4983 32.5326 98.1597 165.7100

0.4 498.8604 2820.8704 240.2975 146.7881 32.8873 19.8204 56.1180 113.6039

0.5 212.3589 2051.0250 85.8231 62.4859 13.8639 9.14581 24.9110 65.3375

F=0.4

0.1 1317.5662 944.4984 1054.1656 388.1072 89.4438 39.9412 141.3377 194.9315

0.2 1198.4110 2056.3814 811.5770 353.0085 80.5634 39.4186 129.7315 193.7972

0.3 868.1037 2813.0360 496.3485 255.7119 57.7910 31.5991 95.3443 160.9781

0.4 478.4089 2705.2247 230.4462 140.9219 31.5391 19.0078 53.8172 108.9419

0.5 202.6959 1957.6971 81.9179 59.7068 13.2330 8.7296 23.7769 62.3513

F=0.6

0.1 1290.7599 925.2823 1032.7183 380.9504 87.6241 39.12868 138.4700 191.1303

0.2 1161.4035 1992.8793 786.5151 342.7726 78.0755 38.201384 125.7314 187.9394

0.3 830.8653 2692.3674 475.0570 245.2187 55.3120 30.24364 91.2577 154.1426

0.4 453.0425 2561.7869 218.2273 133.7093 29.8668 18.000045 50.9647 103.1876

0.5 191.5483 1850.0299 77.4127 56.5329 12.5053 8.2495478 22.4692 58.9212

Table 3.4: Relative Efficiency of the FQRR model with respect to other existing model(s) when n = 800
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The discussions of simulation results presented in Tables 3.2-3.4 is as follows

The values of Relative Efficiency of the suggested model as compared with existing

model(s) with different values of sample size i.e., n = 650, 700, 800 are presented in

Tables 3.2-3.4.

It is clear from Table 3.2 and 3.3 that the relative efficiency by using the suggested

forced re-scrambled ORRT estimator (µyRF
) over Eichhorn and Hayre [10] (µy(EH)

)

estimator is larger as compared to the other considerable estimator’s i.e. Gupta

et al. [17, 19,21] (µy(G0)
, µy(Gi)

, µy(Gyw)
), Bar-Lev et al. [5] (µy(BBB)

), Gjestvang and

Singh [13] (µy(GS)
) and Ahmed et al. [2] (µy1(A)

, µy2(A)
) estimator(s). Thus, proposed

FRORRT estimator (µyRF
) over Eichhorn and Hayre [10] (µy(EH)

) estimator is better

than the other competing estimators.

From Table 3.4, it is obvious that the relative efficiency by using the suggested

FRORRT estimator (µyRF
) over Bar-Lev et al. [5] (µy(BBB)

) estimator is larger and

according to Table 4. the proposed FRORRT estimator (µyRF
) over Bar-Lev et al.

[5] (µy(BBB)
) estimator is better than the other competing estimators. Thus, our

recommendation is to prefer the proposed forced re-scrambled optional randomized

response technique (FQORRT) in practice.

3.6 Conclusion

In this chapter, a novel Forced re-scrambled ORR model has been proposed and

explored. The discovered FRORR model is determined to be more efficient than

other existing models. The properties up to the first order of approximation are

also studied. A simulation study using R software is also carried out to support up

the theoretical results and from the simulation results, it is clear that the suggested

model (µyRF
) is more efficient than the other competing models. As a result, the

proposed FRORRT approach may be forced to survey practitioners in real-world

difficulties anytime they want to deal with stigmatized problems.
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